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Abstract

This document! is a (nearly) unified guide for ggraf-4.0 that includes revised and
updated versions of the previously available documentation. For instance, an extended dis-
cussion on the generic sign convention implemented in the program (which does not rely on
graphical rules) is included. On the other hand, some other details (references, etc) will be
added later. As usual, a summary of the new features is included in the Changelog (the last
section).

The latest pack includes some (compilable) examples that illustrate how the new API
(ie application programming interface) works. The latest version might still not be the
definitive qgraf-4.0 — rather just an advanced development version that still has to go
through further testing, at least — but it is getting close now.

1 This version is part of the qgraf-4.0.5 pack (September 2024), and was typeset in TEX
aided by the Eplain, epsf, colordvi and manmac packages.
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0. Preliminary remarks, current plans

This guide includes up-to-date examples of a control-file (Beciion27) and of a model-
file (Bection27). Moreover, Bection 21 shows how to create an executable file, or binary, for
use in auto-mode (the usual mode, in which the program runs ‘autonomously’, supported by
the operating system and some installed libraries); note that an additional compiler option
has just become necessary. The recently introduced API-mode, where some other program
calls QGRAF by means of an interface, is discussed in Bection 37, and the corresponding
compilation procedure in Beciion 24.

In recent years, most of the development has been increasingly focused on usability
rather than on diagram related features. The corresponding releases have been closer to
development versions than in the past, for that allows adding new features more frequently.
Nevertheless, that development phase seems to be nearing its end, and the above mentioned
trend will end with it — new releases are likely to become either less frequent or include just
the odd new feature. Obviously, there are still various non-trivial features, some of which
suggestions, waiting for their turn.

Actually, ggraf-4 will rely on revised, slightly different input specifications, and its use
in automatic set-ups is not recommended for the time being; some ancillary software will be
available, to help with the corresponding transition (Bection ). The list of changes follows,
in the form of ‘rules’ (rules 4-7 are new but rule 10, which has also been added to the list,
is not); a few of these changes have been hinted at for some time. Whenever possible, any
such change should be accompanied by a corresponding feature of the file conversion tool, so
as to render the number of changes much less relevant.

(1) the names of files and directories will be constrained — as described in Bection 19
and in Becfion 73, only generally;

(2) only the characters ‘%’ and ‘#’ will be allowed as annotation-marks (the asterisk will
be excluded at last); only one type of annotation-mark will be allowed in any given file;

(3) some ‘void’ control-file statements will no longer be accepted (Bectionh3);

(4) the default external momenta and the default prefix of the integration momenta will
be dropped (the respective identifiers will have to be declared, should they be needed);

(&) the default filename for the control-file, ie qgraf .dat, will be deleted (a filename will
have to be specified, always);

(6) the style-keyword <diagram_index> will be re-defined in the epilogue section, where
it should be replaced by <diagram_counter> (Beciion 32.8);

(7) the style-keywords <command_loop> and <command_line_loop> will be renamed
(respectively) <statement_loop> and <statement_sub_loop>; the style-keyword
<command_data> will be replaced by <sub_statement>, which is not fully equivalent;

(8) in model-files, both constants and functions must be declared; any function involved
in a numerical constraint (eg a vsum statement) should be declared integer as well;

(9) the implicit statement continuation will be dropped, and a statement continuation
mark will be required in model-files and control-files, in every appropriate instance;

(10) for any input file, the maximum allowed length of any line will be increased to 120.



The set of backward-incompatibilities for qgraf-4 should now be considered closed. It
ought to be clear that the option to do a ‘rather good sweeping’ prevailed, which included the
deletion of some unnecessary defaults. Actually, it is likely that a good number of the above
rules are broken only rarely in current practice, and that little (if anything) has to be done
about them (ie these). Rules 1-5 have been implemented already, and the remaining rules
should become mandatory with the next stable version (which will probably be qgraf-4.0,
sometime in mid or late 2025). Rule 10 would not be a (new) restriction by itself had it not
been tied to rule 9; neither one has been fully enforced thus far so as to keep current input
files (specially model-files) compatible for a little while longer.

A second look at the above list ought to suggest that its impact should be much more
limited than the one that might be suggested by the number of items alone. Rules 1-5
consist in fairly simple restrictions that could be implemented (eg) at once in related third-
party software since compatibility with currently available versions of the program would not
be affected. Rule 8 could also be implemented in software relying on qgraf-3.6.

At present, the file conversion tool can deal with rules 2 and 9 (and, trivially, with
‘non-rule’ 10). What will not be addressed, for obvious reasons, includes the modification of
third-party software dealing with the construction and naming of input files (rules 1 and 5
are the ones falling into this category). As already mentioned, however, these two rules could
be implemented now, with no ‘side-effects’ (regarding QQGRAF), even in software relying on
ggraf-3.4 — so that transitioning to qgraf-4 later on would be simpler.

The ability to deal with the remaining rules (3—4 and 6-9) might be implemented in
that tool also (though later, possibly with the release of the patch version that precedes the
next attribution of stable status), depending on the time available. Regarding the changes
already implemented (rules 1-5), the automatic conversion of model-files and style-files is
sufficient; the conversion of the control-file is not. Rules 6-8 should be addressed, so that in
the worst case it would all resume to creating the control-file and dealing with filenames.

The reasons for those changes include the following: fixing or improving poor design
choices (rule 9, specially), improving compatibility with different operating systems, trying to
ensure that input files can be easily interpretable, and eliminating potential pitfalls. There is
also a reason for introducing those changes at this time. That reason is the relative stability
of both that interface and of QGRAF-R. For example, QGRAF and QGRAF-R should in
some ‘near-future’ be able to read exactly the same model-files (including those that use the
language extensions introduced with qgraf-3.6), as well as control-files that satisfy similar
specifications. In principle, the induced disruption should be minimized by introducing all
those changes simultaneously while providing some software to help with the file conversion
(as opposed to more than one set of changes, introduced at different times). Nevertheless,
since ‘simultaneity’ is not really practical at this point (it would require suspending new
releases for quite a while), the next best thing seems to be providing some ancillary software,
which should evolve during the transition period (Bection21).

As with any feature introduction, users that rely (or plan to rely) on packages that
depend on this program may have to postpone the effective use of (some of) the new fea-
tures. As a possibility /suggestion, there might be two distinct directories for model-files —
say, models3/ and models4/ — with models3/ storing the files in the format accepted by
qgraf-3.6, and models4/ the newer version of those files, to be accepted by qgraf-4. In
fact, until things stabilize, a model-file in models4/ could be created on-the-spot from a file
in models3/, whenever necessary, using QGRAF itself (Bection 211). That possibility applies



also to style-files. Thus, apart from an automatic translation involving a few very brief runs,
current input files could continue to be used until the time for the full transition arrives.

Regarding the previously announced interface (API), there are some other changes
and additions; the ‘final’ specification is presented in Bection=3a; Although further testing is
necessary, it should be possible to use the latest version for related software development.

Some of the past developments are due to ‘suggestion-requests’ from various users. Con-
cerning the more recent features (ie introduced with qgraf-3.1.5 and later versions), Lance
Dixon suggested something like the diagram option onshellx, and Vladyslav Shtabovenko
suggested having more than one kind of output-file in the same run, allowing the name of the
control-file to be definable, and a file overwriting feature (and, indirectly, allowing the use
of some additional characters in input files, in annotations). Regarding run-time optimiza-
tions, John Gracey and V. Shtabovenko suggested improving the efficiency of (respectively)
the graph generation for ‘large’ orders of perturbation theory, and of ‘additive-filters’ such as
vsum. The implementation of a formal way to run the program as a sub-program was inspired
in a not so recent request of Mikhail Tentyukov. The suggestions to have no display-output
(or a very limited one) and to extend the loops statement are likely due to Jos Vermaseren,
some time in the nineties!

0.1 Brief notes on the terminology

In what follows, the display means the standard output (redefined or not), and to display
‘something’ means to send a graphical representation of ‘something’ (using ASCII characters,
that is) to the standard output — computer monitor or otherwise. The information sent to
the standard output may also be dubbed the display-output (as opposed to the output that
goes into some file).

Moreover, we shall say that QGRAF is in auto-mode when running autonomously (ie
supported by the operating system and the standard libraries only, and usually launched
from the command-line), and that it is in API-mode when being called from another program
using the API (application programming interface) described in Beciion=37.



Part I — Introduction



1. About the program

QGRAF is a Feynman diagram generator — more precisely, a (Fortran) computer pro-
gram designed with the aim of generating symbolic descriptions of Feynman diagrams in
various types of QFT models — with a configurable (ie programmable) output. Its main

algorithm, of orderly type, is based on the method described in [1].

The program? was created to automate the often tedious (and error prone) task of

writing down symbolic amplitudes for scattering processes, specially when the number of
diagrams involved is large. It is aimed mainly at writing the amplitudes in terms of products
of the matrix elements that follow directly from the Feynman rules. By presenting the
amplitudes in that kind of ‘raw’ form, and also by allowing several types of constraints to be
imposed on the generated diagrams, it should hopefully provide a common starting point for
various types of calculations.

The symmetry factor, a sign® and a set of momenta should be provided for each diagram;
no other field theoretic computation is performed, however. It should be noted that the
generic sign convention implemented in the program does not rely on graphical rules.

Neither vacuum diagrams (ie diagrams with no external fields) nor non-connected dia-
grams are generated; in addition, diagrams must have at least one vertex, which means that
tree-level propagators are not ‘generated’ either.

The program was first used in a (then cutting-edge) 3-loop massless QCD calculation,
circa 1995. Since then, owing not only to impressive developments in multi-loop computa-
tional methods but also to sustained advances in computer technology, quite a few calculations
involving many thousands of diagrams have been reported in the physics literature.

The evolution of QGRAF, measured in terms of the number of lines of code, is depicted
in [Fig__1]. While most of the source code consists in Fortran code, some preprocessor code
is now intermingled, and there is even some C code (for the header file). Obviously, these
numbers do not tell the whole story — not every line of code survives from one version to
the next.

20000
15000
10000 .

5000

I T 1 1 1 I I
10 20 30 31 32 33 34 35 36 4.0 (version)

Fig. 1. The approximate number of lines of code.

2 In this document, ‘the program’ shall mean Qgraf.
3 One that derives from the anti-commutation relations, naturally.



2. Downloading, compiling and installing

The current URL for the program’s website is
http://cefema-gt.tecnico.ulisboa.pt/~paulo/qgraf.html
and the one for automatic downloads (Becfion 1) is
http://qgraf.tecnico.ulisboa.pt/

The (old) domain ist.ult.pt is likely to become obsolete at some point.

In that website may also be found the disclaimer and the general license of the program.
Additional terms might be found in the header of the respective Fortran file(s).

The source files of recent versions (starting with qgraf-3.5) are expected to conform
to the Fortran 2008 standard® (and seemingly the Fortran 2018 standard as well) although
testing has been restricted to the GFortran compiler. Note that there are executable/binary
versions of GFortran for several operating systems, as described in

https://gcc.gnu.org/wiki/GFortranBinaries

but most Linux distros have ready-to-install packages, which might be installed in your
computer already (more than one package may be needed).

2.1 Compiling and linking (auto-mode)

Starting with qgraf-4.0.5 the source code will include preprocessor directives, which
have to be addressed during the compilation. Regarding qgraf-4, in a Linux/GNU system
one may (eg) copy the source file to an empty directory and execute the commands

\mkdir fmodules
\gfortran -cpp -o qgraf -0s -J fmodules qgraf-4.0.5.f08

to obtain an executable named ggraf (the correct version numbers should be used, of course);
the option -cpp will be required from now on, to enable preprocessing. Seemingly, that option
can be used with ggraf-3 without producing any effect since in this case the source code does
not include any preprocessing directive. There is a minor inconvenience in that a number
of Fortran module files are created (one file for each module defined in the source code);
nevertheless, GFortran can place those files in a user-definable directory (option -J), and
they can be deleted once an executable file has been created.

The option -0s tells the compiler to try to minimize the size of the executable while
still enabling some optimizations that tend to increase the performance of the generated code;
option -02 optimizes a bit more (for performance) than -0s, and -03 is also a possibility
(option -0fast should not be used).

For the latest package, executing the command
\make qgraf

in the directory that contains the Makefile also produces an executable file.
If the compilation produces an error message like this one

Fatal Error: Cannot read module file ’qaski.mod’ opened at (1),
because it was created by a different version of GNU Fortran

4 Not only that, a couple of features of Fortran 2008 are actually used — hence those
recent versions do not conform to any preceding standard, eg to Fortran 2003.
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that likely means that the compiler found some module files (which it might have ignored,
or even deleted) in a format it cannot understand, and then it got a bit confused. In that
case, find and delete all the problematic module files, both in the working directory and in
the directory specified with the option -J (their filenames should start with the character ‘q’
and, as reported by the compiler, end with ‘.mod’). Better yet, remove the previous Fortran
module files, if any (in either directory), before re-compiling.

In fact, the existence of earlier module files (in the same format, but for a different
version of the program) can lead to another type of problem, namely compilation failure due
to apparent programming errors! So... any pre-existing Fortran module files should always
be deleted before compiling the source code, or else a new directory (and a subdirectory)
should be created for that purpose, as already suggested.

As there are no modules in Fortran 77, the next command can be used as a template
for compiling older versions (that is, qgraf-3.4 and earlier versions).

gfortran -o qgraf -Os qgraf-3.4.2.f

Compiling with options that rely on somewhat sophisticated code transformations to
produce more efficient executable files (this is often called aggressive optimization), such as
-03 in GFortran, should probably be avoided unless the additional speed is really needed —
compilers, like other computer programs, are not immune to errors. For relevant computations
(ie other than testing), such options should be used only after some preliminary successful
testing (eg with similar but computationally less-demanding cases), where the outputs of
two or more executables compiled with different optimization levels are compared — say,
an executable with the desired ‘aggressive’ level, and one or more executables with ‘non-
aggressive’ levels. Furthermore, it should be kept in mind that changing the program’s
environment (either hardware or software) can invalidate a previous test — for example
updating the compiler, which one’s computer might do automatically, and then recompiling.

Concerning INTEGER type variables (in Fortran), QGRAF requires 32-bit integers in
auto-mode and 64-bit in API-mode (which should be supported by any current compiler).

It is perhaps worth mentioning that the program does not make (explicit) operating
system calls to run shell commands; in fact, it is not even aware of which operating system
is being run. Thus, neither of the following types of statements is used.

call system(...)

call execute_command_line(...)
The first is a non-standard system call available with GFortran (eg for Fortran 77), and the
other is the standard Fortran call, introduced with Fortran 2003. Naturally, (Fortran) output

and input statements are used extensively, providing access to the standard output, to the
control-file, and to any other file specified in the control-file.

2.2 Internal parameters

It is not advisable to change the default value of most of the internal parameters, as
there is a real risk of ending up with a defective program (specially for qgraf-3.1.5 and
more recent versions). The only changes that should be ‘safe’ are the ones that consist in
increasing the values of one or more of the following parameters

scbuff sibuff swbuff0

should the program report that they are too small (these parameters control the size of some
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parts of the working memory). That should not be a frequent occurrence: there would have
to be (eg) an unusually large input file, or a model with a large number of vertices (or at least
some vertices of high degree). One may then double the value of each reported parameter,
more than once if necessary, until there is no error (alas, upper bounds also exist); values of
the form 2™ —1 should be preferred.

2.3 Installing (auto-mode)

The installation is also system dependent but does not require one to perform some
particularly complex procedure. In a Linux/GNU based system one may copy the executable
file to (eg) one of the directories

/usr/local/bin/

/opt/bin/
(possibly after creating it, should it not exist), and then make sure that that executable
has the correct file permissions. For example, if the executable produced by the compilation
procedure is in the current directory (and is named qgraf), one could do the following (as
the root user, say, or using the sudo command).

\cp -i ggraf /usr/local/bin/

\chmod 755 /usr/local/bin/qgraf
After that, if necessary, each user would have to create an appropriate alias for qgraf, or
else add the full name of the installation directory to its own PATH (the shell variable). That

procedure corresponds to a system-wide installation. Should a single-user installation suffice,
then the installation directory could be

$HOME/bin/

Actually, since it is usually convenient to have a dedicated directory for the program (to store
all the necessary files, including subdirectories for model-files and style-files) the executable
could be moved to (or possibly left in) that directory, and then run from there as (eg)

./qgraf my_control_file

2.4 Compiling (API-mode)

Generating an object file suitable for API-mode is also simple if the Makefile that is
part of the package (can be and) is used, but the exact command depends on which interface
subroutine is chosen. The currently available subroutines are the following.

ginterf2008f
gqinterf2008c
qinterf2018c

A Fortran 2008 program should call subroutine qinterf2008f. The compilation step
might consist in something like this:

gfortran -c (...) -0Os -J fmodules qgraf-4.0.5.f
gfortran (...) -o x -0Os -J fmodules qgraf-4.0.5.0 x.f08
Here, x.£08 is a Fortran program that calls the interface, x is the final binary or executable,

and ‘(...)" means an appropriate set of command-line options (see the Makefile, and in
particular how the binary pf08 is created).
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Recall that the conformance of a computer program to some (revised) standard depends
usually on using neither deleted features nor non-standard extensions — hence (eg) a Fortran
77 program might be a perfectly valid Fortran 2018 program (but possibly not a very good
one). Thus, a Fortran 95 program will likely work fine with QGRAF after being ‘polished’
into a Fortran 2008 conforming program (if it is presently non-conforming, in which case the
compilation procedure described in the Makefile should produce error messages). Whether
or not the polishing step can be skipped by adjusting the Fortran standard on the final
compilation, is something that has not been tested; moreover, that option might be compiler
dependent.

The latest package includes also some actual examples of interfacing, whose compilation
relies on a special set of preprocessor and compiler options. The included Makefile can deal
directly with each one of those examples; every example uses the same source file for QGRAF
but the preprocessing options differ. Naturally, it is possible to look inside that file and copy
(and possibly adapt) any command included in it.

In the previous example, the compilation has been split into two steps to isolate the
origin of any problem that might arise. The previous warnings about Fortran module files
should be kept in mind. The Makefile includes some commands for deleting those files but
some have been commented out; the deletion of the respective annotation signs (a leading ‘#’
in every case) should be considered once any required adjustments have been made.

When mixed-programming is involved (for example, when QGRAF is called by a C
program, which is in fact the only mixed-programming case to be considered) the compilation
will very likely require two steps, the first using a Fortran compiler (gfortran, say) and the
second step a C compiler (eg gcc). The examples based on the files pxq08.c and pxq.c
illustrate the two mixed-programming interfaces implemented in qgraf-4.0. Note that there
is an header file (ie qgraf.h) to be imported by any C program using the interface.

In the former example (ie pxq08.c), the interoperability between the two languages is
based on the standard tool available for Fortran 2008 — ie the iso_c_binding module, used
on the Fortran side. In this case, the C program should call subroutine qinterf2008c.

In the second example (ie pxq.c), a more recent standard based on C-descriptors is
used as well — that is, the header file ISO_Fortran_binding.h is used on the C side. In the
supplied Makefile, the compilation that creates the binary pxq uses the Fortran 2018 and
C17 standards. Now, the C program should call subroutine qinterf2018c.
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3. Files, records, and characters

QGRAF deals with several types of files, whose roles are explained below. The name
of the control-file has to be specified when launching or initializing the program — in auto-
mode, as a command-line argument (Becfion33). The other filenames should be declared in
the control-file using appropriate statements.

o control-file

The input file that contains the main instructions for the program.

o message-file

The output file where warning and error messages should be saved.

o model-file

The input file that describes the model to be used in the diagram generation.

o output-file

The main type of output file, where the descriptions of the generated diagrams should
be saved.

o style-file

An input file that contains the instructions for generating an output-file, and in par-
ticular for describing each generated diagram.

In this section we shall be concerned mainly with the input files, whether created by
the user or automatically generated. Moreover, the focus will be on their basic properties,
such as the character set to be used, the size of the records (ie lines) in those files, annotations
and so on.

Since there are three types of input files, one might say that QGRAF ‘speaks’ three
languages — it certainly parses them. Both the control-file and the model-file consist of a
sequence of statements (and possibly comments) but the style-file looks a bit different.

In what follows, and depending on the context, the word filename may refer to the
name of (ie character string defining) a regular file, directory, or symlink.

3.1 The character set

First of all, the character set should be the (7-bit) ASCII (nowadays a very small subset
of UTF-8) which includes 95 printable characters and 33 control (non-printable) characters.
The printable characters consist of 26 letters (upper and lower case), 10 decimal digits and 33
punctuation symbols. The control characters that remain in use® include (eg) the characters
that mark the end of the line (or record) or the end of the file, but their exact list depends
on the operating system (and possibly even file system). Hereafter, with the exception of
‘newline’, we will usually do our best to pretend they are not there.

The control characters remain typically in the background, so that the user needs not

deal with them explicitly (nor even see them). An exception to that rule is discussed in
Becfion 353, though.

5 In fact, many of those 33 control characters are no longer used.



14

3.2 The space character

Apart from being able to improve readability, the spaces in input files either act as
a separator, delimiting character (sub-)strings, or represent real space characters in some
(‘encoded’) strings (Bection 2 ). Often, they are not even needed as a separator since other
punctuation symbols can also fulfil that role.

3.3 The annotation-mark(s)

In control-files and model-files, any line whose first character is either ‘%’ (percent sign)
or ‘#’ (hash mark) is ignored. Thus, that kind of lines (to be referred to as annotations)
can be used for explanatory notes and other comments. No annotation should ‘break’ a
statement extending over two or more lines. Style-files may also include annotations, but the
restrictions are different (Bection291l).

Only one type of annotation-mark (ie ‘%’ and ‘#’, when employed in the above described
role) can be used in any given input file.

3.4 The statement continuation mark, wide(r) files

The input files may contain lines (or records) with up to 120 characters,® not counting
newline. Simultaneously, for model-files and control-files (but not for style-files), a statement
continuation mark (the backslash ‘\’) has been introduced. This feature does not apply to
annotations — only statements can be continued. Two examples of control-file statements
using the new specification follow.

output_dir = \
’/tmp/my_temporary_dir/’ ;

partition = 372\
41 ;

A backslash character should appear at the rightmost position of each appropriate input line
and should not break identifiers, keywords, or other special strings. Each statement should
occupy either a single line or a number of consecutive lines; in addition, continuation lines
should not be ‘empty’, ie each one has to include some relevant part of the statement, however
small (a single punctuation mark, even).

The number of lines occupied by a single statement is also bounded since there is a
maximum allowed statement length (not smaller than 500).

When no ‘long lines’ exist (and until the next stable version is released), statement
continuation marks may or may not be used but there must be some consistency — in any
such file, they should be used either in every appropriate instance or in none.

NB: Although not particularly difficult, the addition of statement continuation marks to
model-files and control-files can be done with QGRAF (Beciion21).

6 But only up to 80 characters with previous versions.
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4. Basic types of character strings

This section discusses some of the types of character strings recognized by the program,
namely identifiers, integers, rationals and encoded strings. Naturally, several punctuation
marks are also recognized, but those will be presented when needed, without further ado
(note that some of those marks are not single ASCII characters, while others which are single
ASCII characters are not usually considered as punctuation marks). Moreover, the program
recognizes (i) a special type of strings that appear in the style-file (the ‘style-keywords’), to
be discussed later, and (7i) the signs ‘+’ and ‘-’ when not part of integers and rationals (in
model-files).

o An identifier is a string made of letters, digits, and underscores, with the condition
that the first character is a letter. Examples: spin, F_0, csi___

o An integer is a sequence of digits, possibly preceded by either a plus or a minus sign.
Examples: -0, +17, 1234.

o A rational number is either an integer or a sequential concatenation of (¢) an integer,
(7i) a slash ¢/, and (ii7) a nonzero unsigned integer. Examples: 1/3, -1, +0/5.

The characters mentioned in each of the above definitions are the only ones allowed.
In particular, space characters are not allowed in those strings, although they can be used in
a different type of string that will be described in the next paragraphs. When dealing with
strings that include spaces it is often convenient to use the symbol , — the so called visible
space [2]. This symbol allows one to clarify whenever a space is indeed part of a string, or
where a record does begin, or end (specially if there are leading and/or trailing spaces).

4.1 Encoded strings

It would be convenient to have strings that are accepted as indivisible, even if they
included sub-strings that could be classified as identifiers, integers, punctuation marks, and
so on. For example, suppose that the string

Quantum Electrodynamics in D=4-epsilon,dimensions

should be accepted as a single object. A solution to that problem consists in encoding
the original string into another one that cannot be mistaken for other types of strings (or
collection thereof), and then supply the encoded string to QGRAF, which will simply decode
it. The ASCII character 39 (which usually represents the apostrophe or the right quote)
plays a special role in the encoding algorithm that was implemented. To encode a string
is straightforward: in the first place every apostrophe is duplicated (ie replaced by two
consecutive ones) and then a further apostrophe is added to each end of the resulting string.
The encoded form of the above string is simply

’Quantum Electrodynamics in D=4-epsilon dimensions’

Here are other examples: the empty string is encoded into the string >’ of length 2, and
a single apostrophe (when considered as a string by itself) is encoded into the string >?°’°
of length 4. This type of encoding (to be dubbed normal-encoding) is also used in Fortran
programs, as known, but the syntax for string concatenation is different (see below).

As stated earlier, there is an explicit upper bound for the record size. This condition
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places an effective bound on the size of (eg) identifiers, since an identifier cannot be broken into
components. Nevertheless, strings presented to the program in encoded form can avoid that
bound: before being encoded, any such string can be decomposed into several components,
and then the encoded strings corresponding to those components may be written sequentially,
either on the same line (separated by at least one space!) or on a number of consecutive lines.
For example, the string

f(x)=" 1+sin(x)’

is not the normal-encoding of any (single) string, but it will be decoded as
f(x)=1+sin(x)
since the concatenation is implicit; by contrast, the string
Yf(x)=’1+sin(x)’

will be decoded as
f(x)=’1+sin(x)
because in this case there is a single component, not two.

A given string may have many (non-normal) encodings; we will say that a string ¢ is
an encoding of another string s if and only if ¢ will be decoded as s.

4.2 Constraints on filenames and paths

The names of files and directories (and paths) accepted by the program are encoded
strings. The following restrictions apply to their non-encoded forms, whether specified in the
control-file or in the command-line:

o each (ASCII) character should be either alphanumeric (ie a letter or a digit) or one
of three ‘special characters’ — namely, the underscore, the hyphen-minus, and the dot
(or period);

o the first and the last characters should be alphanumeric;

o no two special characters should appear consecutively.

Moreover, these constraints apply to each path component (the constraints for the path
separator are described in Bection73). For example, the following statements (which define
the output-directory and an output-file, respectively) are valid.

output_dir = ’/home/user/qgraf/tmp_dir/’ ;

output = ’tmp_file-1.out’ ;
The latter statement includes a filename with every possible type of special character, as
defined previously.

The above mentioned restrictions may be bypassed at the operating system level with
the help of symlinks. The noblanks config option might be useful for declaring filenames in
the control-file.

4.3 A constraint on integer numbers

Arbitrarily long integers are not supported (nor arbitrarily long rationals, therefore).
There is then a largest (but not very large, positive) integer M supported, in the sense that
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any integer z — either read, written, or even evaluated by the program, excluding the diagram
index and the index offset — should satisfy the condition

lz] < M.

Presently (for qgraf-4.0), M ~ 231/2 5 10%. If the internal parameters are not modified,
that value seems to be more than enough for the currently required tasks — eg labelling the
various ‘elements’ of the diagram, generating indices specified in the style-file, and evaluating
both symmetry factors and other weights (for the ‘filters’ psum and vsum).

It is possible to specify larger ‘integers’ in the model-file, but only in encoded form.
Thus, in practice, those would not be integers — nonetheless they can be reproduced (unen-
coded) in the output-file.
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Part IT — The control-file
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5. The basic input statements

The control-file contains the main instructions for the program, expressed as statements
of various kinds. In auto-mode, its name should be an argument of the command that launches
the program (Becfion—33); in API-mode, it must be passed in one of the arguments of the
interface subroutine (Beciion 374).

5.1 The required statements

Although the control-file may include quite a few different types of statements (see Becl
Eon21), we will start off with a ‘minimal’” example which will help us discuss the basic state-
ments, possibly in their simplest form; both auto-mode and a single output-file are assumed.
Any other type of statement is optional (sometimes the output, style, and loop_momentum
statements can be absent too).

output = ’q_list’ ;

style = ’qgraf.sty’ ;

model = ’qed’ ;

in = electron[pl], positron[qg2] ;

out = photon[ql], photon[q2] ;

loops = 2 ;

loop_momentum = k ;
These statements cannot appear in an arbitrary order; with a single exception (the first two
can be permuted) their relative ordering is fixed. The generic statement ordering is shown
in Becfion 29.

The output statement declares an output-file, which is a file where the generated
diagram descriptions should be included, one after another. This statement is not available

in Apl-mode. Unless it is known in advance that the number of diagrams is not too large,
a preliminary run, with no output, should be considered — see eg the count_to statement

The style statement declares a style-file, which should contain the instructions for
generating an output-file.

The model statement declares the model-file, which should consist in a description of
the model for which the diagrams are required.

In the above example, all of the input and output files are in the current directory. Yet,
it is possible to declare files in other directories, eg
model = ’models/qed’ ;
or even is some other directory, eg
model = ’/home/username/models/qed’ ;
Moreover, three special (sub-)directories can be declared — one for model-files, another for
style-files, and yet another directory for output files (Bection12).

In any statement specifying some input or output file, or some default directory, the
respective name should be the encoded form of the actual filename used by the operating
system. Nevertheless, allowed paths and filenames are subject to the constraints described
in Becfion 279 and in Becfion 73.
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The in and the out statements declare the incoming and the outgoing fields (which
should be defined in the model-file) as well as the respective momenta (which should be
identifiers). In the above example, p1 is the momentum of the electron (flowing inwards)
and q1 the momentum of one of the photon fields (flowing outwards). Additional details are
presented in Bection T0. It should be noted that the diagram sign may depend on the exact
sequences in which the incoming fields and outgoing fields are declared (Beciion3J).

The loops statement specifies the number of loops (or cycle-rank) of the diagrams to
be generated. An extended form of this statement also exists (Becion 11).

The loop_momentum statement declares the common prefix of the integration momenta,
which must be an identifier. For example, if the control-file declares that identifier as k and
requests 2-loop diagrams then the two integration momenta will be k1 and k2. This statement
is optional when the respective identifier is not needed — eg when no output-file is to be
produced, or when the diagrams requested are trees. Conflict with the zero-momentum and
the external momenta should be avoided.

5.2 Void statements and superfluous statements (in the control-file)

A wvoid statement is a statement that includes no actual data, eg
config = ;
style = 77 ;
Currently, only the following types of (valid) statements may be void.
o config
o in
o options
o out
When the control-file is edited ‘by hand’, statements can easily be converted into annotations
and back again.

Void statements are not the only kind of superfluous statements. Sometimes it is
possible to delete a non-void statement from the control-file without producing any relevant
effect. Any non-void superfluous statement is accepted provided its type is usually accepted
(note that two types of statements are not available in ApI-mode Bection21).

5.3 Long filenames (and long paths)

The string encoding described in Bection 41 can be employed to deal with long ‘file-
names’ (path included). As the filenames declared in the control-file are encoded strings,
they can be split into separately encoded components. For example, the statement

model = ’/home/username/models/qed’ ;
can also be written as (eg)
model = \
’/home/username/’ \
’models/qed’ \
(possibly without statement continuation marks, for now). Therefore, the length of such a

filename can easily exceed the maximum allowed line length. As mentioned earlier, there is
also an upper bound for the statement length... (not smaller than 500).



21

6. The config statement

The config statement allows the specification of diagram unrelated options. If present,
it must be the first statement in the control-file. The keywords allowed in this statement will
be dubbed config options (or configuration options), to distinguish them collectively from
the other kinds — ie diagram options and command-line options. Some of the config options
(nolist, 1f, and those that define the display-modes) are not available in API-mode.

6.1 The option nolist

The config option nolist disables creating any output-file when one or more files of
that kind are declared, eg
config = nolist ;
output = ’d_list’ ;
style = ’£f0.sty’ ;

Thus, this option can be used to predict whether some output-file, to be (possibly) generated
in a subsequent run — a similar one, just without that option — will be of any use (and with
no risk of filling up the disk partition). A ‘bounded run’ can be performed with the help of
the count_to statement (BeciionTA).

6.2 The option delete

Whenever the filename specified in either the messages or output statements is that
of an already existing file and the output-directory is defined (Becfion73), the config option
delete instructs the program to overwrite any such obstructing file. An example follows.

config = nolist, delete ;
output_dir = ’tmp_dir/’ ;
messages = ’msg.txt’ ;

output = ’q_list’ ;

This option should be used with care.

6.3 The option 1f

If the operating system is one of those for which a ‘newline’ consists of a 1line feed
character (ASCII control character LF), there is an experimental feature that should speed-up
the write operation and which is enabled by the config option 1f, eg

config = 1f ;

This should lead to a small to moderate (overall) performance increase, if the output-file
is large enough. Compatible operating systems include Linux/GNU based systems, as de-
scribed in Wikipedia’s Newline” page, Section Representation. One may always run the
program with and without that option (a single test case might be sufficient) and check
whether the output-files are identical.

7 https://en.wikipedia.org/w/index.php?title=Newline&oldid=863813417



6.4 The option noblanks

The config option noblanks instructs the program to discard blanks (ie each and every
space character) appearing in the names of files and directories (paths included) read from
the control-file. For example, this means that the statements
config = noblanks ;
output_dir = ’ tmp_dir / ’ ;
output = ’ q_list ’ ;

should become equivalent to
output_dir = ’tmp_dir/’ ;
output = ’q_list’ ;

irrespective of the operating system.

6.5 The display-modes: noinfo, info, verbose

Given the current number of possible warning messages, it may be convenient to have
some control over the output displayed (in auto-mode). Three display-modes® have been
created for that purpose, and can be described as follows.

o noinfo

Nothing should be displayed unless an error condition is detected.

o info

The program’s name and version numbers, the statements from the control-file, and
various numbers of generated diagrams (subtotals for each vertex-degree partition, and
also the total number) are displayed in that order; when applicable, the subtotal for
each loop order is also displayed. If the diagram generation finishes but there were
suppressed warning messages (which would have been shown in verbose mode), a
warning sign is added to the line that shows the total number of diagrams, eg

total = 12343 connected diagrams (w!)

o verbose

In addition to the information displayed in info mode, the program displays every
‘alert’ it is able to, as well as a summary of the model consisting of various numbers
of propagators, vertices and (when applicable) sectors; as it should be clear, this mode
may help in fixing defective input files.

The display-mode can be set explicitly by including one of those three options in the
config statement, eg
config = info ;

Otherwise, it is set implicitly: if the config option nolist is used then the display-mode is
set to verbose, else to info. If a run-time error is detected, the corresponding error message
can be either displayed or saved in the message-file (or both) and then the program stops.

8 A display-mode corresponds to what is often called a verbosity level.
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6.6 The option flush

Normally, the program will exit without ascertaining that the operating system makes
any open output files available to other processes, in their final form (although the operating
system will eventually do so). Using the config option flush prevents that kind of short-cut
and might therefore be useful (specially) when some of the output-files are big: the program
will explicitly ask the operating system to do the above mentioned operation, which may
speed-up its completion (probably slightly), and then when QGRAF exits other programs
should be able to start reading the output files at once (this is likely similar to executing a
sync command applied only to those files).

6.7 The option no_ntnls

In API-mode, trailing newlines are automatically deleted but non-trailing ones are not.
While it is possible to rewrite a style-file formerly designed for auto-mode into another more
appropriate for ApI-mode, the config option no_ntnls offers a different possibility: it will
enforce the deletion of non-trailing newlines in any output-block for the diagram section
(only after the output-block has been built in the usual way).

This option can be used in auto-mode too.

6.8 A missing option

When the number of diagrams is ‘big’ (greater than 105, say), the output-file will be
quite large, obviously, and it might be desirable to split it in several files of a more manageable
size if (eg) the diagram processing software can handle them more efficiently than it would
handle a single large file. Although the program does not provide a way to perform this kind
of operation, that might not be a real problem as there exist tools which, with little effort,
can be used for the job. The rest of this section describes a possible method (for Linux/GNU
operating systems). The following lines

#, <diagram_counter>xyx
<epilogue>

show an excerpt of a conceptual style-file: they represent the last line of the diagram section
(an extra, artificial line introduced for the present purpose) and the line that declares the
epilogue section. Let us assume that the string xyx does not normally appear in the output-
file, ie that it is generated only when that extra line is added (if that is not the case then some
other string may have to be used). Now we will rely on the operating system and execute a
command of the following kind.

csplit —-prefix=’xx’ --digits=3 dlist ’/0000xyx/’ °’{*}’

This splits output-file d1ist into smaller files (the pieces), containing the description of 104
diagrams each (except for the last piece, which could have a smaller number), as the pattern
0000xyx appears every time the diagram counter is a multiple of 10000. In this example the
pieces will be named xx000, xx001, xx002, and so on; the prefix xx and the length of the
suffix (ie the number of digits) may be specified as command-line arguments.

The prefix should be chosen with care, as csplit overwrites existing files; it is safer to
execute the csplit command in a directory containing only (a copy of) the necessary files,
of course. If the lines matching the pattern should be deleted, the following additional option
can be used.

--suppress-matched



24

To keep the number of files within reasonable bounds (let us say that we want at most
100 files, approximately), the number of diagrams per piece should typically be larger than
1% of the total number of diagrams. Hence, for that upper bound, having 10* diagrams per
piece could be acceptable when the total number of diagrams does not exceed one million.

That process can be iterated without having a very large number of files at any given
time. For example, if the output-file contains 107 diagrams and one wishes to create pieces
with 102 diagrams each, one may first create only 100 pieces with 105 diagrams each and then
split each piece in 100 sub-pieces, but not simultaneously — ie a piece is split, its sub-pieces
processed and then deleted, then another piece is split, and so on.

In the near future, hopefully, a direct interface to each diagram amplitude (as generated
in real time) should provide a flexible solution to the problem of storing and/or processing
the program’s output in more diverse ways.
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7. The model_dir, output_dir, style_dir and separator statements

A default directory is a directory where the program should look for input files of
a certain type (either model-files or style-files), or where the files created by the program
(message-files and output-files) should be saved. Three new (optional) statements provide a
way to define three types of default directories; moreover, to enhance the compatibility of the
program with different operating systems, the path (or directory) separator can be defined
with the help of a further statement. Recall that the names of files and directories accepted
by the program are somewhat restricted (Becion279).

7.1 The model_dir and style_dir statements

The following example shows how to set default directories for model-files and for style-
files, which will be dubbed the model-directory and the style-directory.
config = ;
model_dir = ’models/’ ;
style_dir = ’styles/’ ;
output = ’q_list’ ;
’stylel’ ;
’model2’ ;

style

model

The program will then prepend (eg) the name of the model-directory (specified in the
model_dir statement) to the name of the model-file (specified in the model statement) to
construct the actual filename to be passed on to the operating system; a similar convention
applies to style-files. In the above example, the program would ask the operating system to
read the following files.

styles/stylel

models/model2

Note the trailing slash in the strings that define default directories, which is there because
the program ignores which operating system is being run (see also Beciion 73, however).

7.2 The output_dir statement
The output_dir statement sets the output-directory, which should be reserved to the
files produced by the program. In the next example,
output_dir = ’output/’ ;
messages = ’‘msg.txt’ ;
output = ’q_list’ ;

the program would try to create the files

output/msg.txt
output/q_list

and, as usual, would make no attempt to create alternative files if anything went wrong. The
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full names of the output-file(s) and of the message-file are obtained by prepending the string
that defines the output-directory to every filename specified in either an output or messages
statement.

There is an additional feature that is not available for the other default directories;
namely, it becomes possible for the program to delete any file in the output-directory if
instructed to create one or more files that already exist. For that to happen, however, the
config option delete should be used, eg

config = delete ;
output_dir = ’output/tmp_dir/’ ;
messages = ’‘msg.txt’ ;

output = ’q_list’ ;

Verifying that the output_dir statement is working as expected, before using option delete,
is strongly recommended.

7.3 The separator statement

The slash ‘/’ is used as a path (or directory) separator by (eg) Linux/GNU systems,
but other operating systems may use a different character. That mark might be definable
with the help of the separator statement, eg

separator = ’/’ ;

A single non-alphanumeric character is expected, though ‘encoded’ (note that the noblanks
option does not apply to this statement).

If a path separator is defined explicitly then the names of the default directories need
not end with it — if they do not, the program will automatically append one such character
when necessary.

On the other hand, if a path separator is not defined explicitly then the names of those
directories have to end with a (common) non-alphanumeric character, which will be assumed
to be the path separator.

The name of a regular file (or of a symlink pointing to a regular file) should not end
with a path separator.

NB: Although qgraf-4.0.5 accepts only one separator character (namely, the slash), other
separators may be added if necessary; a detailed request may be sent in by e-mail after
confirming that the website’s page ‘news, alerts’ has no entry about such a request.
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8. The messages statement

The messages statement declares the name of a file (dubbed the message-file) to be
created by the program for saving error and warning messages, eg
config = verbose ;
output_dir = ’tmp/’ ;
messages = ’‘msg.txt’ ;
output = ’d_list’ ;
style = ’£f0.sty’ ;

Since the program stops on any detected error, if an error message is saved then it should
be the last message in that file. If empty, the message-file is deleted at the end of the run.
Moreover, the symbol (w!) mentioned in Bection B 1 will not be displayed if the message-file
has been created (whether it is kept or not).

This optional statement is independent of the display-modes and aimed mainly at script
based set-ups. Note, though, that messages issued before the message-file has been opened
will not be stored in that file. Problems at that stage should occur only rarely, if at all, unless

o the control-file cannot be read or is defective in some way (for example, if it includes
invalid statements, or statements that lead to errors), or

o the message-file already exists and cannot be overwritten (see config option delete,

echion6.7).
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9. Multiple style (and output) statements

To generate more than one type of output-file in the same run, the control-file should
include multiple output and style statements. In this case, the style-files and output-files
should be paired — by alternating the respective statements, eg

config = ;

style = ’fl.sty’ ;
output = ’outl’ ;
style = ’f2.sty’ ;
output = ’out2’ ;

All of those files should be distinct, and there should be at most 7 pairs. It is possible to
have zero pairs, although that case is not very useful (still, the number of diagrams may be
obtained). Note that ‘void’ style and output statements are no longer allowed.

The program tries to open every style-file specified in the control-file, almost simulta-
neously, and a run-time error occurs if two (or more) of those files are actually the exact
same file. For example, that error will occur if the control-file includes the statements

style = ’fl.sty’ ;
style = ’f2.sty’ ;
and if £2.sty is a symlink to £1.sty, since in that case the program would try to open the

same file twice.

In ArI-mode, multiple style statements may still appear but no output statement is
allowed. In this mode there are no output-files, just output-blocks.

NB: For each output-file, the <statement_loop> skips the iterations corresponding to those
output and style statements that do not refer to that file.
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10. The in and out statements (extended version)

Occasionally, the external momenta need not be declared and it is possible to state (eg)

in = electron, positron ;

out = photon ;

If at least one momentum is declared, then all momenta must be declared. Nevertheless,
when the output of the program depends one some momentum, internal or external (which
very likely means nearly always), the external momenta do have to be declared,” eg

in = electron[pl], positron[p2] ;
out = photonl[ql] ;

Should anti-commuting fields be present, some care should be taken with the relative
ordering of the external fields declared in those statements — specially if two or more runs
are employed to create the required output-files for the same scattering process (Beciion 38).

The expressions for the momenta of any diagram are seldom unique, in terms of both
the external momenta and the integration momenta. Given that the sum of the incoming
momenta must be equal to the sum of the outgoing ones, it is always possible to avoid
including in such expressions a term that depends on a specific external momentum. That
can be achieved by altering the respective declaration in a subtle way. In the previous
example, to exclude any term for the momentum q1, the following out statement should be
employed instead.

out = photon(ql) ;

This type of substitution modifies the output of the style-keywords <momentum_term>,
<momentum>, and their duals, but only in the propagator-loop and the ray-loop. Their output
remains unaffected in both the in-loop and the out-loop.

For n-point functions, n > 2, such substitutions tend to increase the average number
of terms in the expressions for the internal momenta, but for n < 2 that is not so.

For n = 2, it becomes possible to have the internal momenta depend on only one (fixed)
external momentum (besides the integration momenta, of course).

For n = 1, the question does not arise except in the ray-loop, and then only for the
unique (vertex,ray) combination that corresponds to the leg of the diagram; in this case,
that momentum is replaced by the zero-momentum. No internal momentum depends on the
external one (which is null by momentum conservation, anyway).

9 There are no longer default momenta, as relying on their existence could shorten the
path to trouble.
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11. The loops statement (extended form)

From the very start, the loops statement allowed users to specify exactly one value
(the number of loops, or cycle-rank), eg

loops = 2 ;

It is now possible to instruct the program to generate in a single run all the diagrams for a
number of consecutive cycle-ranks, eg

1 to 4 ;

loops
or even

loops 4 thru 1 ;

These two statements are not fully equivalent, even though the keywords thru and to can be
exchanged with one another. The program starts with the first (ie leftmost) specified value,
and then progresses sequentially towards the second value by adding or subtracting 1 in each
iteration, as appropriate. The diagram constraints specified by other statements apply to
every loop order, obviously.

Usually, the propagators do not contribute directly to the order of perturbation theory
(they contribute with a null weight, let us say) whilst a vertex of degree d (> 3) contributes
with weight (d/2)—1, which is positive. Actually, it may be more convenient to consider the
expansion of the amplitude in some coupling constant g (or in some other appropriate factor)
rather than on the number of loops, so that the weights are integer (in which case they can
be accepted by vsum statements). For example, at tree-level, in a simple gauge theory, cubic
vertices are proportional to the coupling constant g and quartic vertices are proportional to
g? (and propagators do not depend on g).

Nonetheless, there are cases in which the number of loops given as input does not
represent the order of perturbation theory (when the vertices and/or propagators represent
some higher order corrections instead of the tree-level interactions and propagators). It will
then be necessary to deal with propagators and/or vertices with unusual weights. Often, such
cases can be addressed by performing multiple runs (for different values of the cycle-rank),
with specially adjusted parameters for each run — including the numerical arguments for the
vsum and/or psum statements. Then, the extended loops statement might be able to reduce
the number of required runs.

There is a marked difference between dealing with usual or with unusual weights,
however. With the usual (implicit) weights, a single run with an extended loops statement
provides the required diagrams for all of the corresponding orders of perturbation theory; in
the other case, and assuming that the order of perturbation theory can be defined in terms of
the number of loops and of a single (explicit) weight, each run provides the required diagrams
for just one such order.

NB: The display-output has been modified, so that the cycle-rank is displayed in the diagram
generation phase too. The current potential of this extended statement is still a bit limited,
but that should change whenever some other improvements are introduced.
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12. The options statement

The options statement can be used to specify a number of (mostly) topological prop-
erties that the generated diagrams should have. If no such keywords are stated then the
program will try to generate all the connected diagrams satisfying the constraints imposed
by the existing statements. To make QGRAF discard certain types of diagrams (such as
diagrams with tadpoles, 1-particle reducible diagrams, etc) one simply has to include the
appropriate keywords, separated by commas, eg

options = nobridge, noselfloop ;

12.1 The keywords for the options statement

The current list of topological options for the options statement follows — each ‘main’
option on the left-hand side, ‘complementary’ option on the right-hand side, forming pairs
of dual options. These options can be used to impose various types of restrictions on the
unlabelled topologies of the generated diagrams, irrespective of the fields involved.

bipart nonbipart
cycli cyclr
nobridge bridge
nodiloop diloop
noedge edge
noparallel parallel
norbridge rbridge
nosbridge sbridge
noselfloop selfloop
nosigma sigma
nosnail snail
notadpole tadpole
onepi onepr
onevi onevr
onshell offshell
onshellx offshellx
simple notsimple

In (classical) graph theory, there are certain graph transformations that involve the
deletion of nodes and/or edges; any edge is indivisible and must be automatically removed if
any of its endnodes is deleted. A different option, which seems more natural in a QFT context,
consists in defining an edge as a pair of linked half-edges. Moreover, any vertex includes a
set of half-edges, each of which may or may not be linked to some other half-edge. One will
then speak of splitting or cutting edges (into the constituent half-edges), thereby preserving
the vertices involved. Also, deleting a verter will mean splitting every edge incident to that
vertex first, and then deleting the full (isolated) vertex.



There are also a few other options (of different kinds), shown next.

floop notfloop
new_elinks

new_loops

new_partition

new_topology

topol

12.2 The main options

The remainder of this section contains a description of all those options, in alphabetical
order — but, typically, only for the one of the options of each dual pair. When a dual exists,
each option rejects what its dual selects, and conversely; hence there is no need for repeating
this part of the definition over and over.

e bipart

This option selects those diagrams whose topology is a bipartite graph.

A bipartite graph is a graph whose node-set can be partitioned into two subsets A and
B in such a way that every edge (if any exists) joins a node u € A to a node v € B. That
is the same as selecting the diagrams with no circuit (or loop) of odd length; in particular,
the diagrams must have no self-loops (nor triangles, pentagons, and so forth). Every tree is
clearly bipartite.

The dual option (nonbipart) requests at least one odd cycle.

e cycli

This option selects those diagrams that have at most one ‘cycle-block’.

Given the usual types of Feynman rules in momentum space, the evaluation of some
diagrams involves a factorizable integration, ie decomposable into a product of two or more
independent integrations (for 2-loop and higher order diagrams, obviously). Even if the
complete integrand does not have such a property it might be possible to decompose it into
a sum of factorizable expressions, if the diagram topology is right.

A circuit (or simple cycle, which physicists may call a loop) of a graph G is a non-empty
set of edges that, together with their endnodes, define a connected subgraph of G in which
every node has degree 2. It follows from this definition that a circuit cannot be decomposed
into two or more circuits. Recall that an edge of a graph is either a bridge (if it does not
belong to any circuit) or a nonbridge.

Definition: a cycle-block (or cycle-component) of a graph G is a non-empty set S of
nonbridges such that

o for every circuit C of G, either C C S or C NS = 0;
o given any two edges e1,es € 5, there is a circuit containing e; and es.

Circuits of length 1 and 2 are allowed: the former case corresponds to self-loops, the latter
to pairs of parallel edges (self-loops excluded) as in diagrams D; and D3 (Fig-3).
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There is a simple interpretation of cycle-blocks in terms of sub-diagrams. Let D be an
[-loop, non-tree diagram, and P, the set of its nonbridge propagators; also, let ki, ko ...k
be the independent integration momenta, and ignore the external momenta (eg set them to
zero). Then each cycle-block is a minimal (ie non-decomposable into two or more sets of the
same kind) non-empty subset S of P. such that the two sets of momenta flowing through
the propagators in S and S = P, \ S, respectively, can be parametrized independently. The
case where S = P, and S is empty is implicitly allowed, as there may exist a single cycle-
component.

The diagrams selected by option cycli (which stands for cycle-irreducible) are those
that have a non-factorizable cycle space, ie that have at most one cycle-block. Since cycli
ignores bridge-type propagators, it is the following combination

options = cycli, onepi ;
which selects sets of diagrams even more ‘primitive’ than those selected by option onepi only.
Any self-loop is a cycle-block. Diagram D; (Fig—3) has two self-loops and thus two
cycle-blocks (hence it is rejected by cycli); denoting the momenta of propagators 1 and 2
(as marked) by k; and ks, one may readily see that (a) those two momenta are independent,

and (b) there is no propagator whose momentum has to be expressed as a linear combination
in which the coefficients of k; and k9 are both nonzero.
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Fig. 2. Illustrating option cycli.

Diagram D> has also two cycle-components, defined by the subsets of propagators
{1,2,3} and {4,5,6,7,8}. Excluding the contributions of the external momenta, here it is
possible to express eg ks in terms of (ki,k2), and (ks, ke, ks) in terms of (ky,k7). Since
one may do so for each of the above (disjoint) subsets, D, is rejected too. That type of
partitioning is not possible for diagram D3, which is selected. Any tree diagram and 1-loop
diagram (eg Dy) is selected by cycli.

e floop

The diagrams rejected by option floop are those that have at least one circuit (ie loop)
of odd length for which every propagator is that of an anti-commuting field. In qgraf-3.2
and later versions the use of floop requires that

o there is at least one anti-commuting field;
o every vertex has either 0 or 2 anti-commuting fields.
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e new_elinks

This option selects only one diagram per labelled topology — more precisely, it selects
those diagrams for which <new_elinks> produces a ‘1’.

Option new_elinks may simplify the task of determining the distinct labelled topologies
of the output diagrams. It is incompatible with options new_loops, new_partition and
new_topology.

e new_loops

This option selects only one diagram per cycle-rank (ie number of loops) — ie it selects
the diagrams for which <new_loops> produces a ‘1’.

It is incompatible with options new_elinks, new_partition and new_topology.
e new_partition

This option selects only one diagram per vertex-degree partition — that is, it selects
the diagrams for which <new_partition> produces a ‘1’.

It is incompatible with options new_elinks, new_loops and new_topology.
e new_topology

This option selects only one diagram per unlabelled topology — that is, it selects the
diagrams for which <new_topology> produces a ‘1.

Option new_topology may simplify the task of determining the distinct unlabelled
topologies of the output diagrams. It is incompatible with options new_elinks, new_loops
and new_partition.

e nobridge

This option rejects topologies with bridges (thus, nobridge is equivalent to onepi).

e nodiloop

This option rejects topologies with circuits of length 2 (that is, any two distinct vertices
may be joined by at most one propagator).

e noedge

This option excludes diagrams with edges (or propagators). Thus, it selects only those
diagrams that consist of a vertex whose legs coincide with the external fields of the input
process (it could be more than one diagram, since duplicate vertices are allowed).

e noparallel

This option excludes diagrams with parallel edges (ie no di-loops, and each node can
have at most one self-loop).
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e norbridge

This option rejects diagrams with reqular bridges.

A bridge is regular if its splitting divides the (connected) diagram into two sub-
diagrams, both of which include at least one external field (that is the type of bridge which
is not associated with tadpoles). Option norbridge can be used to generate the diagrams
for those correlations functions analogous to 1-particle irreducible correlations functions, but
possibly with tadpoles (ie with singular bridges).

e nosbridge

This option excludes diagrams with singular bridges.

A bridge is singular if its splitting breaks the (connected) diagram into two sub-diagrams
such that (at least) one of the sub-diagrams does not include any external field. In other
words, a singular bridge is a non-regular bridge, and a regular bridge is a non-singular bridge.

e noselfloop

This option excludes diagrams with self-loops.

A self-loop is an edge whose endnodes coincide (ie which forms a circuit of length 1).
e nosigma

This option excludes diagrams with ‘self-energy’ insertions (ie sub-diagrams that are
2-point functions), anywhere. Since the criterion is topological, it can exclude diagrams that
are not higher-order corrections of a tree-level propagator — that is, diagrams with ‘mixed’
propagators are also rejected.

e nosnail

This option is an extension of notadpole that also rejects diagrams which contain what
one might call collapsed tadpoles (or tadpoles without tail).

e notadpole

This option is equivalent to option nosbridge.

e onepi

This option (which is equivalent to option nobridge) excludes diagrams with bridges,
usually dubbed 1-particle reducible diagrams.

A 1-particle irreducible diagram is a connected diagram that cannot be disconnected
by cutting any single propagator.

e onevi

This option selects those diagrams whose topology has no articulation point, or cut
vertex (in the graph theoretical lingo). This means those diagrams that remain connected
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upon the removal of any single vertex. By definition, the empty graph is connected; con-
sequently, diagrams discarded by option onevi must have at least three vertices. The dual
option is onevr — onevi means I-vertexr irreducible, and onevr means I-vertex reducible.

In the case of 1-particle irreducible diagrams there is some overlap between options
cycli and onevi, but they do not coincide. If both bridges and self-loops are excluded,
however, then they become identical.

In Fig. 3, 77 and T5 are 1-vertex reducible: deleting any vertex that does not link to
an external field generates two disjoint components. Topology T3 is 1-vertex irreducible as
it has too few vertices to be reducible. Some of the previous figures provide useful examples
too: diagram Dj in [Fig. g, and diagram Ds in are 1-vertex reducible.

T, T

Fig. 3. Illustrating option onevi.

There is a class of topologies that are both 1-particle reducible and 1-vertex irreducible,
for which T5 (Fig-3) may be seen as a kind of prototype: they have exactly two nodes (u
and v, say), joined by a single edge; u and v may have multiple self-loops (depending on the
model); the external fields connect to u and/or v, obviously.

e onshell

This option rejects diagrams with ‘self-energy’ insertions (ie 2-point functions) on the
external lines — where a propagator with a momentum equal to that of an external field is
present. As the criterion is topological, those 2-point functions need not be propagators of
the classical Lagrangian). See also options nosigma, onshellx, and the plink statement.

e onshellx

Option onshell discards diagrams that have a propagator whose splitting generates
two separate diagrams, provided one of those is a 2-point diagram. In that case there will be a
bridge-type propagator whose momentum equals one of the external momenta (as in diagrams
Dy and Dg (Fig-4), where the bridge is labelled with the letter b and the corresponding
external line with the letter e).

Occasionally, a more extensive elimination may be useful. Option onshellx also rejects
diagrams for which the above mentioned bridge is absent, as if it had contracted to a single
point and its two end-vertices had merged (compare eg D; and Ds). Diagrams rejected by
onshellx, but not by onshell, will have at least one vertex of degree d > 4. As those
diagrams can be generated by using the combination

options = offshellx, onshell ;

it is possible to do a basic cross-check in the case where they are thought to evaluate to zero.

Diagram D, is rejected by option onshellx (but not by onshell), whether or not there
exists (in the same model) a similar diagram D, with the same fields except for the bridge
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b. Diagram D- is discarded by either option, obviously.

. .
’ ’

D / D, /

Fig. 4. Tlustrating option onshellx.

Diagram Dj is not rejected by onshellx, unlike Ds. Although D3 can be obtained
by contracting the bridge in Dy, that bridge does not isolate a single leg (and no suitable
diagram exists), whilst D5 can be obtained from Dg, which has a suitable form. If options
onshellx and nosnail are used simultaneously then all six diagrams will be rejected.

Regarding cross-checks that have been performed so far, the numbers obtained for the
combination

options = offshellx, nosnail ;

agree with several numbers from L. Dixon (private communication) and S. Badger for 1-loop
and 2-loop diagrams, respectively. Additionally, a second algorithm has been developed for
onshellx, and an agreement with the original algorithm was found.

e simple (obsolescent)

This option excludes topologies with self-loops and di-loops. The following equivalence
applies.

simple <  noselfloop, nodiloop

e topol (obsolescent)

This option discards diagrams whose (unlabelled) topology is equal to that of an earlier
generated diagram (to be used with a single neutral field, only).

Option topol can be replaced by new_topology, which is more general; it will not be
available in the next stable version.
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13. The zero_momentum statement

The zero_momentum statement can simplify the implementation of a proper ‘space-time
index algebra’, with every 4-momentum (or perhaps D-momentum) carrying its own space-
time index. Moreover, concerning the symbolic manipulation of the amplitudes, the actual
zeroness of that momentum can then be ignored until the most convenient moment.

This type of statement simply declares an identifier, eg
zero_momentum = kO ;

that becomes the redefined null momentum (which had been set to ‘0’ by default). This
identifier (here, k0) has to be distinct from the other basic momenta (external momenta and
integration momenta). The consequence of that redefinition is this: when a null (internal)
momentum is found and the respective expression must be produced, the program outputs
that identifier instead of the usual ‘0’.

The natural use of this statement is associated with the <momentum_loop> construct
(Bection3279), although the above mentioned substitution applies also to the output produced
by <momentum>. In an output-file, one can then have an expression like k0_{mu4} instead of
0_{mu4}.
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14. The partition statement

Unless the noinfo option is enabled, the graphical output includes the wertezr-degree
partitions that are compatible with all of the following inputs: the model, the scattering
process, and the order of perturbation theory. In general, this compatibility is not sufficient
to ensure the existence of corresponding diagrams in the input model — it just means that
the vertex degrees and their respective multiplicities satisfy a simple arithmetical relation
which ensures that there is at least one unlabelled topology with that vertex-degree partition
(which in some models with the same set of vertex degrees will be the topology of some
diagram).

The partition statement restricts the diagram generation to some of those partitions.
For example, if a model has cubic and quartic vertices only, the statement

partition = 372 471 ;
requests that the diagrams should have precisely two vertices of degree 3 and one vertex of
degree 4. Suppose now that the set of vertex degrees of the input model is {3,4,5,6}. Then,
since any missing term is ignored, the above statement may select more than one partition;

in fact, it selects every compatible partition of the form 32 4! 5% 6%, if any, where a and b
are ‘free’ (ie not constrained by that statement). Similarly, the statement

partition = 370 ;
selects those partitions that exclude cubic vertices. A ‘term’ n"k should not appear in the
partition statement unless the input model contains some interaction vertex of degree n.
To pick a single partition it may be necessary to specify nearly all (or even all) of the vertex
degrees and their multiplicities.

In the above examples each term sets the exact multiplicity k of some degree n, but it
is also possible to impose inequalities rather than equalities. For example, the statement

partition = 37(1+) 471 57(1-) ;
requests at least one cubic vertex, exactly one quartic vertex, and at most one quintic vertex.
As the next example shows, some partition statements are trivial.
partition = 37(0+) ;
When the control-file includes a partition statement the numbers of diagrams for
excluded partitions are not displayed (nor computed, of course), although the partitions

themselves are displayed. The following graphical output matches the first of the above
statements.

- 4°2
372 471 R 10
374 -
total = 10 connected diagrams

It should be fairly obvious that the partition statement can be employed as a crude
method of ‘parallelizing’ the program (that is, of dividing some diagram generation task,
unequally, among a few CPU-cores or a few computers).
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15. The index_offset statement

When combining the output-files of two or more runs into a single file, it may be useful
not to have the first diagram of every output-file being assigned the diagram index 1. The
index_offset statement instructs the program to add a non-negative integer to the default
diagram index, eg

index_offset = 1071 ;

The following examples show possible applications of the index_offset statement
(more complex examples can be devised, of course). Let us suppose in the first place that
the diagram selection criteria involve not a conjunction like

true = A ;
true = B ;
where A and B represent valid expressions, but some other logical connective, eg
( true = A ) V ( true = B ).

Although this type of statement is not accepted, there is a way out: that inclusive disjunction
can be split into three mutually exclusive cases that can be run separately, namely (case 1)

true = A ;

false

then (case 2)

]
os}

false = A ;

true = B ;
and finally (case 3)

true = A ;

true = B ;

Similarly, the exclusive disjunction can be divided in two non-overlapping cases, the equiva-
lence A < B in two cases also, and so on.

As a second example, suppose that one wants to generate a set of diagrams satisfying
the following two conditions: (i) the selection criteria can be expressed as a conjunction of
valid statements (hence there is in principle no need to split the run into multiple runs), but
(for efficiency reasons, say) (i) the set of diagrams should be partitioned into two subsets,
each of which to be processed in a distinct way (or on different computers). Then, if the
partitioning can be expressed by a single valid statement (A, say), it is as if there was a
simple exclusive disjunction with only two cases — namely (case 1)

true = A ;
and (case 2)

false = A ;
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16. The count_to statement

The count_to statement, which is not available in API-mode, sets a limit on the number
of diagrams to be generated by the program. More precisely, the program stops as soon as
one the following targets is reached:

o no further diagrams can be found;

o the number of generated diagrams becomes equal to the positive integer declared in
the count_to statement.

This statement automatically prevents the creation of any output-file (or output-block), as
it is intended solely as a means of obtaining some preliminary information about the size of
the set of diagrams to be generated (or not). If no other information is available at the time,
the exact number of diagrams will not be known at the end of the run unless it is strictly
smaller than the value declared in the statement. For example, if the statement

count_to = 46340 ;

is included in the control-file, the program will generate at most 46 340 diagrams. If there are
fewer diagrams, the total number reported should be the correct number, otherwise merely
a lower bound. In the latter case, this uncertainty will be reflected in the final part of the
display-output by the addition of a prefix to the string total, eg

min_total = 46340 connected diagrams

Also in that case, the diagram numbers displayed for the last subtotal and for the last vertex
degree partition are also lower bounds; naturally, not every (valid) partition and cycle-rank
is necessarily displayed.
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17. The elink statement

The elink statement provides a way to restrict the configuration of the external fields
— that is, diagrams can be selected or rejected depending on whether or not some external
fields are attached to the same vertex or set of vertices. Some constraints of this type, to be
dubbed external linking conditions, can be simulated by constructing an extended model —
with new external fields and new vertices — but that approach can be exacting.

1~ Lo 4
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Fig. 5. Illustrating the elink statement.

Let us take a look at some examples, assuming the generic scattering process

1 Yo = P1 da.

The field-indices of those external fields are, from left to right, equal to —1, —3, —2, —4.
The statement
true = elink[ -1, -3, incl, 1, 1 1;

selects those diagrams in which ¥, and vy link up with the same vertex, inclusively —
meaning that the other external fields can be attached to any vertex, as far as this statement
is concerned. For example (see [Fig- 1), diagrams like D; and Djs are validated, and Do
rejected. This other statement

true = elink[ -1, -3, excl, 1, 2 ] ;

selects those diagrams in which v and 1, link up (in total) with either one or two vertices,
this time exclusively — ie ¥; and ¥ may or may not be attached to the same vertex, but
in either case the other external fields (¢; and ¢3) should link up with other vertices. This
condition rejects diagrams Dy and D3, for instance.

A generic elink statement includes three types of arguments. Each argument of the
first type should be the field-index of an external field, and therefore a negative integer (no
repetitions are allowed). Then comes a non-numerical argument, either excl or incl, to
specify whether the linking condition is exclusive or inclusive. The third set of arguments
consists of two positive integers (a and b, say) which specify the range for the number of
vertices involved in the linking condition — that is, for the number of vertices that link up
with at least one external field whose field-index is an argument of the elink statement. If
m denotes the number of arguments of the first type and n the number of legs, then the
inequalities

1<a<b<m<n, n>2,

should hold, otherwise an error will occur. Here are some more examples: the statement

false = elink[ -1, excl, 1, 1 1;
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requests ¢ to link up with some other external field(s), whilst the statement
false = elink[ -1, -2, incl, 1, 1 1;

requests 11 and ¢ not to link up with the same vertex (a condition which diagram Dj fails to
satisfy). For the above mentioned process, the next statement requests that no two external
fields link up with the same vertex (actually, in this example excl would do as well).

true = elink[ -1, -2, -3, -4, incl, 4, 4 1;
Then, in the special case of 1-loop diagrams, that statement selects ‘squares’, or ‘boxes’. That
possibility can be generalized to select diagrams with a k-cycle (k < n) from sets of n-leg
1-loop diagrams, should they exist — eg a triangle, a square, a pentagon, and so on (even a

1-cycle and a 2-cycle). In this case (with the above convention) one should have an inclusive
statement with m =n and a =b = k.

Some elink statements are trivial, eg (still in the case of the above mentioned process)
true = elink[ -1, incl, 1, 1 1;

elink[ -1, -3, incl, 1, 2 ];

elink[ -1, -2, -3, -4, excl, 1, 4 1;

true

true

Their negation rejects every diagram, of course.
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18. The plink statement

This statement addresses the case where the selection criterion consists in either the
absence or existence of a bridge-type propagator with a specific nonzero momentum. The
ability to either disallow or require the existence of such propagators may help select eg
diagrams whose amplitude has some type of resonance, or tree diagrams contributing to the
s-, t- and u-channels; in the case of non-tree diagrams it also provides a way to have some
external fields ‘on-shell” and others ‘off-shell’ (as a kind of selective onshell option).

If a connected diagram D has a regular bridge then splitting that edge will produce two
connected sub-diagrams. Let X; and X5 be the non-empty subsets containing the external
fields of D in each of those sub-diagrams; also, let p; and q; denote the incoming and the
outgoing momenta. The momentum P flowing through that bridge can be then written as

P= Zl aipi — Zj bja;

with a;,b; € {0,1}; the global sign will be ignored (in any case, the relative signs of the
coefficients in the above relation are fixed). As the external momenta satisfy the momen-
tum conservation relation >, p; = > ;95, it is clear that P can be expressed as a linear
combination of the external momenta in two different ways.

-1 -4
1 P1 a2 4 NS
D, AN e D, D3
7 AY
Y Ay
-3 2 PlaN
p2 1 3 4 N 2

Fig. 6. Illustrating the plink statement.

The arguments of the plink statement should be the field-indices of the external fields
in either X; or Xs. The number of arguments cannot be equal to zero, nor equal to the
number of legs, as P would then be null. Let us take a look at some examples: the statement

true = plink[ -1, -3 1;

selects those diagrams that have at least one propagator with momentum p; +p2 (or q; +qa2),
like diagram D; (Fig-@); diagram D, which has a propagator with momentum p; —qs (or
p2 —q1), would be selected by either of the statements

plink[ -1, -4 1;

plink[ -3, -2 1;

true

true

The plink statement can also be used to set only part of the external fields ‘on-shell’.
For instance, the statement

false = plink[ -2 ];

rejects any diagram with a bridge separating the external field with index —2 from every
other external field, such as diagram Dj3 (which has one such bridge, labelled with a ‘b’).
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19. The psum and vsum statements

The ability to define functions (ie parameters associated to fields, propagators, and
vertices) in the model-file automatically suggests a few types of diagram selection. The psum
and the vsum statements make it possible to impose some numerical constraints involving
integer functions (either p-functions or v-functions).

19.1 The vsum statement

The existence of a mechanism to (eg) restrict the powers of coupling constants seems
particularly relevant, specially in models with two or more independent coupling constants
— partial radiative corrections based on subsets of diagrams defined by such conditions have
been routinely considered in the particle physics literature.

Let g_power be a v-function mapping each vertex to an integer equal to the power of
a certain coupling constant g in the Feynman rule for that vertex. To restrict the power of g
in the diagram amplitude, one may write eg

true = vsum[ g_power, 4, 4 ] ;

In general, the first argument of vsum is a v-function and the other two are similar to the

corresponding arguments of iprop, bridge, ..., although they can be negative. Since the
function values have to be integer, definitions like

g_power = ’1/2°

g_power = ’ +2°

will not be accepted. In principle, it is possible to convert a constraint involving rationals
into another constraint depending on integers only; in practice, such integers should not be
too large (there should be no problem if their absolute values do not exceed 103, say).

Obviously, this statement can be used for purposes other than selecting the powers of
coupling constants. For example, let one be a v-function that maps every vertex to ‘1°; if
one is used as the first argument of a vsum statement then the number of vertices in each
diagram will be restricted.

Here is another example: let V; be a subset of the interaction vertices, and vbinary a
v-function that maps vertices in V7 to ‘1’ and vertices not in V; to ‘0’. Then, the statement

false = vsum[ vbinary, 0, 0 1;

selects diagrams containing at least one vertex in V;. In this case, defining submodels should
be considered as an alternative (at least if it makes sense to define such a model).

19.2 The psum statement

There is an analogous statement for propagators. For instance,
true = psum[ pweight, -1, 1 1 ;
restricts the sum of the values of the p-function pweight taken over the diagram propagators.

Still, there is a nontrivial difference between the psum and vsum statements, apart
from the fact that they work with distinct types of functions. Given that QGRAF does not
produce tree-level 2-point functions, any generated diagram has at least one vertex; therefore,
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any implicit summation for vsum includes at least one term. Nevertheless, there exist tree-
level diagrams without propagators — namely, the diagrams that consist of the tree-level
vertices of the model, which we may call stars. There are also tree-level scattering processes
with diagrams of ‘mixed-type’, ie some diagrams are stars while others contain one or more
propagators.

Conventionally, a null term is assigned for the stars, but the user should check whether
that is indeed the desired action and, if not, make the necessary adjustments. It might be
necessary to generate the stars in a different run (if they are required, but are excluded by
some psum statement which must be present to deal with the non-stars), or else the stars
may have to be excluded (eg) by some additional statement (if stars are to be discarded, but
are allowed by the current statements).

19.3 Additional comments

Asymptotically, ie for a large number of vertices (vsum) or propagators (psum), these
“filters’ do not (moreover, cannot'?) have efficient implementations if they are general enough.
For some particular cases, though, some speed-ups could be implemented (note that there
has been a relatively small improvement with qgraf-3.5).

Update: gqgraf-3.6 brings additional efficiency gains for both vsum and psum; apart
from that, in some cases the impact of this (in)efficiency issue can be lessened by defining
submodels (or with the help of the partition statement).

10" At least assuming the widely held belief that the algorithmic complexity classes P
and NP do not coincide (ie P # NP).
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20. Other statements (additional filters)

Some other constraints can be imposed on the propagators and the edges with the help
of a further set of five statements. These optional statements should be the very last ones to
appear in the control-file, and they are of the form

<logical> = <operator> [ <arg_1>, <arg_2>, ... <arg_ k> ] ;

where <logical> should be replaced by either true or false, and <operator> by one of the
following identifiers.

bridge

chord

iprop

rbridge

sbridge
The number of arguments (ie k) should be at least 2, and the last two arguments should
be non-negative integers (which are subject to the bounds stated in Beciion 43) such that

the last argument should not be smaller than the other. The remaining arguments (if any)
should be fields.

For example, to restrict the number of propagators of a certain field phi, a statement
of the following form can be used.

true = ipropl[ phi, 1, 3 1 ;

This statement selects diagrams for which the number of phi propagators is at least 1 and
at most 3. If true is replaced by false then the diagrams selected are the ones for which
the number of phi propagators is either less than 1 or greater than 3. It should not matter
whether a propagator is represented by the particle or the anti-particle.

On other occasions one might be interested in propagators with certain topological
properties. The ‘filters’ chord and bridge restrict the number of propagators that belong
(respectively, do not belong) to a circuit (or ‘oop’); thus, ‘chord’ constrains non-bridges and
the respective propagators. For example, the statement

true = chord[ photon, O, 0 ] ;
requires that there is at least one photon propagator in some circuit. All of these operators
may have several fields as arguments, for example

true = bridge[ photon, electron, 2, 2 ] ;
in which case the sum of photon and electron bridges is constrained, or even no field at all
as in

true = chord[ 1, 2 1] ;
where the total number of chords is restricted.

The statements involving the operators rbridge and sbridge are similar, and constrain
the propagators that sit (respectively) on a regular bridge and on a singular bridge.

NB: A propagator sits on a bridge if and only if its momentum does not depend on the
integration momenta; the bridge is singular if its momentum is identically null, irrespective
of the external momenta (as in a tadpole with a ‘tail’), and is otherwise regular.
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It may be observed that the above types of statements may obviate the need for the
optional keywords notadpole and external in the model-file. In fact, statements like the
following produce (respectively) the same effect.

true = sbridgel photon, 0, 0 1] ;

iprop[ Phi, 0, 0 ] ;

true

The model-file is intended as something fairly permanent, not as something one should change
only temporarily for a single calculation, specially if the same result can be achieved with
the control-file. Both possibilities exist, however.
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21. Statements: required and optional

The model_dir, output_dir, style_dir, separator, zero_momentum and count_to
statements are the latest additions. Below, statements marked with an open circle are not
available in API-mode. The current, strictly required statements follow, in alphabetical order
(these statements should appear exactly once).

in
loops
model

out

Still, the next three statements are typically required too (excepting the output statement

in API-mode).

The loop_momentum statement is required if some output that depends on

the internal momenta is to be produced. The output and the style statements, which may
appear more than once, are needed to create an output-file; in API-mode, the style statement
is required if some output-blocks are to be constructed.

(¢]

loop_momentum
output
style

The set of optional statements that can appear at most once includes the following.

(e]

config
count_to
index_offset
messages
model_dir
options
output_dir
partition
separator
style_dir

zero_momentum

Additionally, there exist the optional statements that involve one of the ‘filters’ listed below,
and which may appear more than once.

bridge
chord
elink
iprop
plink
psum
rbridge
sbridge
vsum



22. An example of a modern control-file

##  the config options

config = delete, noblanks ;

##  the path-separator

separator = /7’ ;

## the default directories
#i (in any relative order)

output_dir = ’tmp_dir/’ ;
style_dir = ’styles/’ ;

‘models/’ ;

model_dir

##  the message-file

messages = ’msg.txt’ ;

##  the style-file(s) and (in auto-mode) the output-file(s)
## (alternating statements if more than one pair exists);
## no output-file(s) in api-mode

style = ’fl.sty’ ;

output = ’q_list.1’ ;

##  the main required statements
## (in the predefined order)

# model = qedl // ’qedx’ ;

model = ’qed’ ;

in = mu_minus([pl], mu_plus[p2] ;
out = photon[ql] ;

loops = 4 ;

(continues on the next page)
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##  other statements that may appear just once

## (only the next 6 types, in any relative order,
## but no count_to statement in api-mode)
loop_momentum = k ;
zero_momentum = kO ;

options = onepi, cycli ;

index_offset = 257 ;

# partition = 375 472 ;

# count_to = 524288 ;

##  other constraints --- examples

## (statements may appear in any relative order)
true = vsum[ v_weight, 2, 4 1;
false = psum[ p_weight, 0, 1 ];
true = elink[ -1, -3, incl, 1, 1 1;

false = plink[ -2 ];
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Part III — The model-file
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23. A basic language for describing models

NB: This section conforms to the latest specifications, for use with qgraf-4.0 — an appro-
priate version of this guide should be used for any previous version.

The input model should be described in the model-file (to be supplied by the user). A
model-file is divided into several implicit sections (the zones), of which only two are always
required. This section discusses only part of the language that can be used to describe
input models; the additional statements are discussed in the next section. The first required
zone contains the propagator declarations, and the second one the vertex declarations. For
example, a model-file for Quantum Electrodynamics might look like this

huupropagators
uulelectron, positron, —1]
uu [photon, photon, +1]

(]

%uuelectromagnetic vertex

uulupositron, ,electron, photon ]

The symbol |, is a wvisible space, which is used here to render the lines of the file clearer. There
is no ‘field statement’ — the fields are declared implicitly in the propagator statements.
In this example there are three fields (denoted by the identifiers electron, positron, and
photon), two propagators, and one (cubic) vertex.

Distinct statements should occupy distinct lines. A statement can occupy several lines
provided the following conditions are met:

o neither empty lines nor annotations exist between the first and the last line occupied
by the statement;

o the line breaks are consistent — that is, every (non-encoded) ‘special string’ (keyword,
identifier, and so on) is contained in a single line;

o the character ‘\’ (backslash) ends any line (except the last) containing only part of the
statement (Becfion 34).

23.1 Propagators

The basic propagator statement is of the form
[ phi_1 , phi_2 , q ]

where phi_1 and phi_2 are fields and q is the commutation number (‘+1’ for fields satisfying
commutation relations, ‘-1’ for anti-commutation relations); the plus sign should not be
omitted. Nevertheless, it is still possible to use just ‘+’ and ‘-’ if done consistently in each
model-file (that is, only one convention can be used). The field phi_1 is the conjugate of
phi_2 and conversely. If phi_1 and phi_2 are identical identifiers then we have a neutral
or self-conjugate field, else phi_1 and phi_2 are dubbed charged fields. Sometimes phi_1
and phi_2 are not really particle and anti-particle, as in the case of ghost fields; nevertheless
phi_1 and phi_2 will be called (respectively) the particle and the anti-particle, in an absolute
sense.
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The propagator represents a non-trivial contraction — ie vacuum expectation value of
the time ordered product of two fields. Graphically, it is simply a type of (possibly oriented,
(bi-)coloured) edge that can be used to construct diagrams. The above propagator declaration
represents the contraction <@ o>, not <¢s¢1>, and this is specially relevant in the case
of anti-commuting fields. In the above example, and denoting the electron field by v, the
propagator [ electron, positron, -1 ] corresponds to the usual <v1)> contraction.

23.2 Vertices

The basic vertex statement (for declaring an interaction vertex of degree n) is of the
following form.

[ phi_1, phi_2, ... , phi_n ]

Obviously, every vertex should have an even number of anti-commuting fields. Interactions
are usually cubic and/or quartic, but in some cases (eg exotic gauges, effective models) there
will be interactions of higher degree. QGRAF will accommodate for most of that: degrees in
the range 3-8 are accepted by default.

The field ordering in the vertex declarations should not be neglected either. The above
(generic) vertex declaration should represent a term (or set of terms) of the Lagrangian
density in which the fields appear in that same order ¢1 ¢s ... ®,, and the Feynman rule to
be used when processing the diagrams should also match that ordering. In the case of the

previous model-file, the vertex [ positron, electron, photon ] corresponds to the usual
Y A, ordering.

NB: Any mismatch between propagator and vertex declarations (on one side) and Feynman
rules (on the other) is potentially disastrous — see in particular Beciion 3.

23.3 Functions (parameters) and constants

The syntax presented up to this point is the basic, minimal syntax. It lets us set the
combinatorial description of the model (ie what kind of edges exist and how they are allowed
to meet at the vertices of the diagrams), and whether the fields satisfy commutation or
anti-commutation relations. That syntax must be extended to provide the ability to define
parameters like spin, electric charge, mass, or even more complex objects representing eg
Feynman rules.

QGRAF allows users to define functions for fields, propagators and vertices. Each
such function — which maps either fields, propagators, or vertices to character strings —
is represented by its own (unique) identifier. A function f that has a finite domain can be
defined by a list of assignments of the form z — f(z)), without using a generic ‘formula’
(not unlike a tabular definition), and that is essentially the method that is used. Moreover, it
is also possible to define constants, which have a fixed ‘value’. Both functions and constants
should be declared before defining propagators and vertices. The constants should be declared
in a single statement, eg

[ constants :: cl, c2, model ]

The functions come in three types, and there is a distinct statement for declaring each type.
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For example, the statements

[ f_function :: ff1 ]

[ p_function :: pfl ]

[ v_function :: vfl ]
declare ff1, pf1, and vfl as (respectively) a field-function, a propagator-function, and a
vertex-function. These are generic functions, which are treated as character strings. The

integer qualifier should be added!! when declaring functions that may be involved in some
constraint (implemented in terms of the control-file statements vsum and psum), eg

[ integer v_functions :: vf2, vf3 ]

The functions of the same type should be declared using at most two statements — that is,
one statement for the generic functions and one other statement for the integer functions,
with no repeated identifiers between them.

A suitable modification of the model-file presented earlier will be used to illustrate
these features. Here is the new version, this time without visible spaces.
% constants
[ constants :: model ]

[ model = ’qged’ ]

% functions
[ f_function :: C ]
[ p_function :: m ]

[ integer v_function :: g_power ]

% propagators
[ electron, positron, -1 ; C= (°-1’, ’+1’), m= ’me’, s= ’1/2’ ]

[ photon, photon, +1 ; C = (°0’), m= ’m0’, s= ’1’ ]

% electromagnetic vertex

[ positron, electron, photon; g_power= ’1’ ]

In this example there is a single constant (ie model, whose value is ‘ged’), and there are three
functions, one of each possible type. The f-function C maps electron to ‘-1’, positron to
‘+1’, and photon to ‘0’ (one may think of C as the electric charge); the p-function m (which
might stand for mass) maps the fermionic propagator to ‘me’, and the bosonic propagator to
‘m0’, whilst the p-function s (the spin, let us say) maps those propagators to ‘1/2” and ‘1’
respectively. Finally, the v-function g_power maps the single vertex to ‘1’ (this function may
represent the power of the coupling constant appearing in the Feynman rule).

A v-function can be defined by including, in the declaration of each vertex, the image
of that vertex under that function (see below for the exact notation), and a similar statement
applies to p-functions. Defining an f-function is just slightly less trivial: every propagator

1 This is not being enforced straight away, but it should be enforced in future versions.
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declaration should contain either a single image or a pair of images, according to the number
of distinct fields in that propagator. The images should be defined on the right-hand side of
the propagator and/or vertex declarations, which should be separated from the left-hand side
by a semicolon. As it should be clear by now, the syntax for defining the images of vertices
and/or propagators is
function_id = S
where function_id is the function identifier and S is the image — an encoded string or, if
allowed, an unencoded string (see below). In the case of f-functions the syntax is either
function_id = ( S1 , S2 )
if the propagator fields are charged, or
function_id = ( S )
in the opposite case (S, S1, and S2 denote (un)encoded strings). Clearly, a p-function is a
special case of an f-function, and can always be rewritten as such.

The following simplification is allowed in the definition of functions and constants: an
image can be written unencoded whenever it is a valid identifier, integer, or rational (length
allowing). Thus, some of the statements of the previous model description can be simplified
as follows.

[ model = ged ]
[ electron, positron, -1 ; C= (-1, +1), m= me, s= 1/2 ]
[ photon, photon, +1 ; C = (0), m= m0, s= 1 ]

[ positron, electron, photon; g_power= 1 ]

Here are also some examples of definitions where that kind of simplification is not permitted:
x =78 =71 sum= ’2+1’ key= ’a b’,v = ’(0)’, rp = ’)’.

23.4 Optional keywords

There are a few additional keywords that serve to further characterize the fields of the
model. The keyword notadpole prevents the generation of diagrams containing one-point
insertions of the field(s) declared in the statement where that keyword is used. For instance,
if a propagator is defined as

[ photon, photon, +1, notadpole ; \
C=1(), s=11]
then diagrams with tadpoles of the field photon will be systematically suppressed (this means
that no such propagator will have an identically null momentum).

Sometimes one might want to declare fields that act simply as external sources; others,
to suppress propagators with very large masses. In such cases, the keyword external can be
used. The statement

[ Phi, Phi, +1, external ]

leads to the exclusion of the diagrams with propagators of the field Phi. Objectively, such
statements do not declare propagators, only fields.

In contrast, the keyword internal can be used to specify that some fields should never
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appear as external fields of the scattering process (or correlation function) given as input.
For example, if the model-file contains the propagator statement

[ phil, phi2, +1, internal ]

then phil and phi2 should both be excluded from the in and out statements, otherwise an
error condition will occur.

The keyword external is incompatible with the other two.
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24. An extended language

The input-model description has been overhauled recently, and it is now possible to
define sectors, submodels, and default values (or simply defaults) for functions. What can be
achieved with this extended language includes (i) a more compact description of ‘complex’
models (that is, models with many propagators and/or vertices, and for which one or more
functions have been defined), and () a combined description (in a single file) of a given
model and some of its submodels and/or extensions. Creating a combined model-file can be
a bit more time-consuming than creating separate files but, should some changes be required
later on (eg adding new functions, or fixing some definition), it would then be possible to
update all of those models by editing just one file.

A ‘modern’ model-file is divided into six zones (or implicit sections), though some of
them may be empty. An illustrative example of such a file — that may be useful in inferring
the sequence in which the different types of statements should appear — can be found in

Becfion 77.

24.1 Sectors

A sector is a ‘piece’ of the model-file delimited by two statements of the form

sector[ sectorl 1]

end[ sectorl ]

Here, sectorl is the name of the sector, which must be an identifier. Not every type of
statement may appear in a sector block — in fact, there are only two types of sectors, each
of which includes at most two (other) types of statements. A propagator-type sector includes
one or more propagator statements, possibly preceded by other statements (to be discussed
later) that define default values for some f-functions and/or p-functions, eg
sector[ sectorl ]
[ ; pfi= -1 ]
[ phi, phi, +1 ; pf2= ’A’ ]
[ psi, psi, -1 ; pf2= ’B’ ]
end[ sectorl ]
Likewise, a vertez-type sector should include one or more vertex statements, and may include
additional statements that define default values for some v-functions, eg
sector[ sector4d ]
[ ; vfi= 0 ]
[ phi, phi, phi ]
[ psi, psi, phi ]
end[ sector4 ]
Although propagator and vertex statements need not be part of a sector block, propagator

statements should still precede vertex statements and (thus) propagator-type sectors should
precede vertex-type sectors. The sectors are declared in zone 1, and there should be a single
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statement for each type of sector, eg

[ p_sectors :: sectorl, sector2 ]

[ v_sectors :: sector3, sectord4, sector5 ]

24.2 Submodels

The existence of sectors makes it possible to define submodels by instructing the pro-
gram to treat some sectors as an integral part of the input model and other sectors as alien.
The propagator and vertex statements that are not part of any sector are always part of the
definition of every submodel. The submodels are declared at the very top of the model-file
(zone 1), and then defined one by one in zone 4. For example, the statement

[ submodels :: subml, subm2 ]
declares two submodels, and the submodel block
submodel[ subml ]
[ include :: sectorl, sector3 ]
end[ subml ]

defines submodel subml by listing the sectors that it comprises (their order of appearance
in the include statement being immaterial). A submodel can also be defined by listing the
sectors that are not part of that submodel, eg
submodel[ subm2 ]
[ exclude :: sector5 ]
end[ subm2 ]

For example, a submodel that comprises every sector of a model-file can be defined by either
listing all the sectors in an include statement or using a ‘void’ exclude statement, ie

[ exclude :: ]
Such a submodel has to be defined if (i) the complete model-file describes a (sub)model that
the program should be able to use and (i) at least one other submodel is defined.

Concerning the control-file, one may have either the usual kind of model statement if

no submodel is defined in the model-file, eg

model = ’qed’ ;
or else an extended statement that also specifies the submodel to be selected (in the next
statement, submodel qedl), eg

model = gedl // ’qedx’ ;

24.3 Constants

Constants were introduced earlier. Still, when the model-file defines two or more sub-
models, it may be useful to define submodel-dependent constants. For example, one may
wish to define for each submodel a distinct string representing the name of that submodel.
The submodel-independent (or global) constants should be defined in zone 2, after (ie below)
the respective declaration statement(s). This is illustrated in the next example (continued
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further below), where c1 is global and ¢2 is not (assuming it is not defined in zone 2).

[ constants :: cl, c2 ]
[ ci= ’g’ ]
The submodel-dependent constants should be defined in every submodel block, unless defaults

are defined (this alternative method is described in the next subsection). The syntax is as to
be expected, eg

submodel [ submil ]
[ include :: sectorl, sector3 ]
[ c2= ’qed3’ ]

end[ subml ]

submodel[ subm2 ]
[ exclude :: sector5 ]
[ c2= ’qedl’ ]

end[ subm2 ]

The first statement in a submodel block should be an include or an exclude statement.
These are the only two types of model-file statements that can be wvoid.

24.4 Default values

Suppose one wants to define a function that has many identical images — in other
words, a highly non-injective function. In that case, it may be convenient to define defaults
for that function. Default values can be defined globally and/or per sector, with the sectorial
defaults overriding the global ones. Sectors need not be defined (just) for this purpose if all
defaults are global.

For each function, it is possible to define at most one global default, and at most one
default per sector. Defaults for distinct functions (and constants) should be defined in distinct
statements. For example, the statement

[ ;; vf2 =1 1]

(which should appear in zone 3, after declaring v£2 as a vertex function, say) defines a global
default for that function. As a result, vf2 no longer has to be defined for every vertex —
only those values that differ from that default have to be set explicitly, in the usual way.
Additionally, if the model-file contains sectors then sectorial defaults can be defined too,
whether or not global defaults exist, eg

sector[ sector3 1]
[ ; vf2 =0 1]

end[ sector3 ]

It then follows that vE2 will be equal to 0 for every vertex in sector sector3 unless that
default is overridden by explicit definitions in the vertex statements. Having statements with
either a single or a double semicolon may serve as a reminder that the corresponding defaults
can be overridden at one or two other stages, respectively. Defaults for propagator-functions
can be defined similarly, but for field-functions there are more possibilities. For example, the
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statement
[;; £f1= (0D, (-1,1) ]

defines a global default for ££f1, both for neutral and for charged fields. Nevertheless, it is
possible to define partial defaults, eg

[ ;; £ff1= (1) 1]
or
[ ; £f1= (0,1) ]

since not every model (or sector) has both types of fields.

Within each sector block, the precedence rules are as follows: statements defining
defaults for f-functions or p-functions should precede propagator statements, and statements
defining v-function defaults should precede vertex statements. Thus, the last statement of
any sector (excluding the end statement that closes the sector block) should be either a
propagator statement or a vertex statement.

Furthermore, it is possible to define defaults for submodel-dependent constants, even
though that feature is probably not very useful. In any case, if the statements

[ constants :: c2 ]
[ ; c2= ’qcd’ ]

are included in zone 2 then ‘qcd’ becomes the global default for c2. That default can be
overridden in any submodel block, eg

submodel[ submil ]
[ include :: sectorl, sector3 ]
[ c2= ’qcdl’ ]

end[ subml ]

24.5 Additional remarks

Defining submodels requires introducing sectors as well, but not conversely. Note also
that sectors and submodels should use distinct identifiers. Let us dub a sector as active
when it is part of the submodel specified in the control-file, and as alien otherwise; when no
submodel is defined then any sector is active. The active sectors are those that the program
will focus on, of course; they are fully checked for syntax and content while the alien sectors
are only partly checked. To properly debug a model-file it is necessary to run the program
for every submodel defined in that file.

Although it is easy to create rather cryptic model-files with this extended language,
that is likely not a very good idea; for instance, model-files may have to be edited (long)
after coming into existence, possibly by someone who did not create the original file. The
proactive measures to avoid creating such files include adding an adequate amount of com-
mentary, avoiding cryptic identifiers, defining the sectors carefully, and grouping together
those propagator (and vertex) statements that are not part of any sector (or even creating
all the necessary sectors to preclude the existence of such statements).

NB: Should you decide to update your ‘old’ model-files, please note that they may still be
used as input not only for some previous version of the program but also for QGRAF-R (until
it is updated, at least, which should probably happen in 2024).
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25. Duplicate vertices

A model has duplicate vertices if its description contains at least two vertex statements
with the exact same fields and multiplicities. Each vertex may in fact have several copies,
and although the corresponding statements may be identical that needs not be the case —
the field ordering and the values of the v-functions may differ.

Duplicate vertices had been tolerated for some time but typically QGRAF generated
more diagrams than necessary (with appropriate ‘symmetry factors’, though, so that the
corresponding calculation could have been carried out). This has been addressed with the
release of qgraf-3.3 — additional symmetries are taken into account, so that there are
usually fewer diagrams now.
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26. The propagator commutation number

The usual propagator statement involves a commutation sign, eg
[ phi, phi, + ]
[ psi, psi, - ]
which may be referred to as either the propagator-sign or the field-sign. Nonetheless, to

make this type of description look a bit more ‘algebraic’, it is now possible (starting with
qgraf-3.6) to replace the commutation sign by a signed commutation number, eg

[ phi, phi, +1 ]
[ psi, psi, -1 ]

The plus sign should not be omitted. Also, there must be some consistency — in any given
model-file, either commutation signs or commutation numbers should be used (but not both).
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27. An example of a modern model-file

b
b
b

A
b
A
b

b
b

b
b
YA
b

zone 1
the submodels first, then the sectors
[ submodels :: subml, subm2 ]

[ p_sectors :: skl ]
[ v_sectors :: sk2, sk3 ]

zone 2

the constants, the definitions of the global constants,
and the defaults of the non-global constants

[ constants :: cl1, c2 ]

[ cl="f1]

zone 3
the functions and their global defaults

[ integer f_functions :: ff1 ]
[ p_functions :: pfl, pf2 ]

[ £f1= (-1,1), (0) ]
[
[

;5 pfl= 1/2 ]
integer v_function :: vfl ]
zone 4

the submodel blocks, including the
definitions of the non-global constants

submodel [subm1]
[ include :: sk2 ]
[ c2 = ’scalar submodel’ ]

end [submi]

(continues on the next page)



65

submodel [subm2]
[ exclude :: ]

[ c2 = ’full model’ ]

end [subm2]

% zone 5  (required)

h
% the propagators and the propagator-type sectors

[ phi, phi, +1 ; pfl= 0, pf2= ’A’ ]

sector [ski]
[ ; pf2= ’B’ 1]
[ psi, psibar, -1 ]
[ lambda, lambda, -1 ; ffi1= (1) ]

end [sk1]

yA zone 6  (required)

A

% the vertices and the vertex-type sectors
[ phi, phi, phi ; vfl= 0 ]
sector [sk2]
[ phi, phi, phi, phi ; vfil= 1 ]

end [sk2]

sector [sk3]
[ ; vfl= -1 ]
[ psibar, psi, phi ]
[ psibar, psi, lambda, lambda ]

end [sk3]
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Part IV — The style-file
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28. Intrinsic representation of diagrams

This section presents a number of technicalities that will be needed for understanding
and controlling the output of the program. To begin with, let us present some terminology.
Apart from Feynman diagrams — viewed as pure combinatorial objects — sometimes we will
also consider the underlying graphs, as if the Feynman diagrams had been deprived of their
fields. When referring to those graphs we will use the terms node and edge. The external
nodes are the nodes of degree one associated with the external fields, while the remaining
nodes are called internal nodes. Similarly, an external edge is an edge that is incident to an
external node, and any other edge is called internal. When referring to a Feynman diagram
we will use the terms verter and propagator; these terms are the analogue of internal node
and internal edge, respectively, but they are meant to include the information about the
attached fields.

The representations of a Feynman diagram that can be obtained in the output-file are
based on a set of indices that label the basic components of the diagram. When generating
a diagram QGRAF assigns one or more labels (integer numbers, let us stress) to each of
the following objects: vertices, propagators, external fields, and internal fields. Terms like
verter-index and propagator-index will be used to denote the various labels associated with
the diagram components.

A critical issue should be clarified at once: the objects that are labelled are (strictly)
not the ones defined in the model-file. In that file, one may find a certain number of fields,
propagators, and vertices that are considered to be different either because the strings that
define them are different (in the case of fields) or because they involve a different set of fields
(in the remaining cases). The labels we have just mentioned are given to embedded objects,
ie attached to some graph component.

Let us see in more detail how one can define the embedding of fields, propagators, and
vertices. Most of those cases are easy: propagators are attached to internal edges, vertices
to internal nodes, and external fields to external nodes. What about the internal fields?
Let us recall that in the perturbative expansion the interaction vertices supply the fields
that are to be contracted in pairs, and which form propagators. Hence internal fields should
be attached to objects surrounding the internal nodes. We could, for example, insert two
auxiliary nodes into every internal edge and then attach the internal fields to those auxiliary
nodes (as illustrated in [Fig- ga). There is no need for auxiliary nodes in the external edges
— the external nodes will do.

The above mentioned method of field embedding is not unique. One could attach them
to edges instead of nodes. External fields would be attached to external edges. One could
insert an auxiliary node into every internal edge (therefore splitting every such edge into two)
and then attach the internal fields to the resulting ‘half-edges’. Hereafter we will take for
granted that the field embedding is properly defined, without relying too much on the actual
method.

28.1 The basic indices (or labellings)

If a diagram has V internal nodes and P internal edges then QGRAF numbers its ver-
tices from 1 to V', and its propagators from 1 to P — see the examples given in [Fig. 1, diagrams
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(a) and (b). Those labellings define what we will dub the vertex-index and the propagator-
index, respectively.

1 3
(@) 4 (b) 2 4
1 1
(€)

Fig. 7. Some indices for a simple diagram: (a) the vertex indices,
(b) the propagator indices, and (c) the leg indices.

The embedded external fields — or legs — should be labelled too. There are two
different leg indices, one for incoming fields (the in-index) and another for outgoing fields
(the out-indez). If a diagram has r incoming legs and s outgoing legs then the former receive
the labels 1, 2, ... r and the latter the labels 1, 2, ... s. The label that is chosen for
each leg follows automatically from the order in which the external fields were declared in
the control-file. For example, if the external fields are declared by means of the following
statements

in = positron[pl], electron[p2] ;
out = higgs[qll, muon_minus[q2], muon_plus[q3] ;

then the leg positron is assigned the in-index 1, and the leg electron the in-index 2; also,
the leg higgs is assigned the out-index 1, the leg muon_minus the out-index 2, and the leg
muon_plus the out-index 3.

QGRAF uses six basic labellings (indices). The field and the ray indices — the last two
types of indices to be presented — are defined over the set of embedded fields.

The field-index uses the propagator and the leg indices. If a propagator has propagator-
index k then its two fields receive the field-indices 2k—1 and 2k (see [F1g-gb); if the particle
differs from the anti-particle then the former gets the index 2k—1 and the latter the index 2k
. An external field is assigned a negative index related to the leg index of the corresponding
external node. Specifically, the field-index of an incoming (respectively, outgoing) field that
has in-index (respectively, out-index) equal to j is defined as —2j+1 (respectively, —2j).
This means that the incoming fields receive odd indices (—1, —3, ...) and the outgoing fields
receive even indices (—2, —4, —6, ...). Although this labelling may seem unnatural at first,
it allows one to distinguish external fields from internal ones — as well as incoming from
outgoing fields — without reference to any other quantity.

The sixth and last type of labelling will be called ray-inder because we may associate
(visually) a propagator emerging from a vertex with a ray. For every vertex, the ray-index
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labels the surrounding vertex fields with the numbers 1, 2 ... ;D (D being the degree of
the interaction), an example of which is given in [Fig: Jc. In contrast to other labellings,
here labels differ only within each vertex; globally, there usually are repeated labels. The
ray-index is not totally arbitrary: the index of an embedded field always coincides with the
position (or one of the positions) of the field name in the definition of the respective vertex
given in the model-file. For instance, if there is a vertex of the form

[positron, electron, photon]

then, for vertices of this type, the field positron will always be assigned the ray-index 1, the
field electron the ray-index 2, and the field photon the ray-index 3, which means that in
this case the labelling is unique — see [Fig- g(c). If the vertex includes repeated fields, some
arbitrariness remains.

Fig. 8. Revisiting the diagram presented in Fig. 7: (a) a way of embedding the internal
fields using auxiliary nodes, (b) the field indices, and (c) the ray indices.

We now have at our disposal two different notations for the embedded fields of a
diagram. The first of these is a single-index notation: ®; denotes the field with field-indez
i. There is also a two-index notation: ®; ; denotes the field that belongs to vertex i (ie the
vertex whose vertex-indez is equal to i) and whose ray-index equals j. In the case of
one has ®_; = @, 2 =9 and @5 = P33 = A.

Some of the indices presented in this section — like the vertex-index — are not com-
pletely determined in terms of a specific and complete rule. Hence one cannot predict eg
the vertex-index of the vertices of most diagrams, relying on this guide only. Should the
undocumented rules used internally by the program change in the future, no problem should
arise provided no special property is assumed other than the generic ones herein presented.

28.2 The field-sign and the field-type

The field-sign is defined as ‘+’ for commuting fields and ‘-’ for anti-commuting fields.
This quantity may also be referred to as the propagator-sign.

Necessarily for embedded fields, we will also define the field-type. It takes only three
values, namely 1 (for incoming fields), 2 (for outgoing fields), and 3 (for internal fields).
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28.3 The propagator orientation

The program also provides a set of symbolic expressions for representing the momentum
flow, a feature that may be rather handy. It is obvious that in order to specify the momenta
throughout the diagram we will have to choose a reference direction for every propagator.
What will be called the propagator momentum is the momentum flowing in that direction.

Let us assume that the field embedding is properly defined, and that the field-index of
every embedded field is known. The actual rule for defining the propagator orientation is as
follows: we pick the direction in which, travelling along the propagator, the embedded field
with field-index 2: is reached before the one with field-index 2i—1. This coincides with the
particle flow whenever the particle and the anti-particle differ.

Ky K

P1 a1

ke-pa ™\ kot
Fig. 9. The symbolic momenta for the diagram presented in Fig. 7.

In one may see the symbolic momenta for the diagram presented in (and
in [Fig- §). It may be verified at once, by taking a look at [Fig-g(b), that the orientation of
the propagators (indicated with arrows) is in agreement with the above mentioned rule for
the field-indices.
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29. Generating an output-file — introduction

In the initial versions — before the release of qgraf-2.0 — there was just a short list
of predefined output formats which could be used to generate the output-file. Having a fixed
number of predetermined formats is a self-limiting approach. Since every program that may
be used to process the output of a diagram generator is most likely bound to have its own
notation, the number of formats, and thus the number of subroutines, may have to increase
over time. A possible alternative is that users write their own conversion subroutines, one for
every program they think of using. Another problem with the fixed format approach is that
it lessens the potential ability of the program to incorporate into the output the parameters
(represented by functions and constants) that are part of the definition of the input model.
If one wishes to have (i) a model-file where the parameters are chosen by the user and (ii) an
output containing a selection of those parameters, using a notation also chosen by the user,
then the fixed format approach is inadequate.

In later versions there is a lot more flexibility, since the output of the program can be
shaped with the help of a simple programming language. It is not just a matter of choosing the
type of delimiters, spacing and similar marks — one can also choose what kind of information
should appear in the output (there are some limitations, of course). In practical terms, it
goes like this: to get a new format a user has to provide a file (the style-file) containing
a rather short program, and that is all there is to it. Users can have a small collection of
such files, and use different formats on different occasions. Typically, it seems much easier to
write and (specially) modify such a file than a full conversion routine. It may be impossible
to write a style-file that formats the output exactly like one wants; however, it should be
possible to write a style-file in such a way that the output-file can be processed directly by
one’s favourite computer algebra system.

29.1 The sections of the style-file

In simple terms, the output-file can be divided into three parts. It starts with a prologue
that may contain, for example,

e the name and version of the program that generated that file, and the approximate
time the file was created;

e information that can be used to identify the input scattering process and the type of
diagrams described in the file (eg the statements included in the control-file);

e extra information to be used by another program that will read the file (eg special
marks to signal the beginning of the diagram list).

After that the diagrams are listed one by one, following a specific pattern. Finally there
is a third section, dubbed the epilogue, whose basic purpose is to mark the end of the list
and/or the end of the file; for example, it is important to know that the program did not
exit prematurely. There is also a second opportunity to pass on additional information to
the program(s) that will process the output-file. Each one of those three output sections is
defined in a corresponding section of the style-file.

The syntax of the style-file is completely different from any syntax discussed so far.

Apart from annotations — see below — the style-file contains ‘text’ (ie printable ASCII char-
acters that, with a few exceptions, are taken literally) as well as ‘keywords’ ( style-keywords).
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An intrinsic style-keyword is a reserved string that starts with ‘<’ and ends with ‘>’, eg
<end>. The keywords that delimit the specification of the output sections, and which must
appear in any style-file, are the following.

<prologue>
<diagram>
<epilogue>
<exit>

They should always appear in that specific order, and only once, each one on its own line
(containing no further characters) and starting at the leftmost position. Those four keywords
are the only ones that must appear in any style-file (note that a string like <exit> is not
a keyword if it is part of some annotation). Apart from syntactic requirements every other
keyword is optional — although a style-file containing no keyword other than those required
keywords is not terribly useful.

The prologue specification starts on the line following the <prologue> keyword and
ends on the line that precedes the <diagram> keyword. Analogously, the diagram section
specification is bounded by the lines containing the keywords <diagram> and <epilogue>,
and the epilogue specification comes between the lines defined by the keywords <epilogue>
and <exit>. What comes either before the line with the keyword <prologue> or after the line
containing the keyword <exit>, if anything, must consist of either empty lines or annotations
— but the latter have to conform to some rules (see BEection33). Elsewhere (ie in any of the
three sections of the style-file) no annotations are allowed.

QGRAF reads the style-file(s) before it starts generating diagrams, and stores internally
what it read. It can then build the character strings to be written to the output-file (or passed
on to the program that calls the API). Each such string, initially empty, has a fixed end (the
‘left-end’, so to say, which is a kind of starting point) and another end (the ‘right-end’) that
can change during the computation. An output string is built by following a sequence of two
basic operations: appending some characters to the non-fixed end of the current string and,
less frequently, deleting one or more characters from that same end. As the possibility of
deleting characters exists, no such string is output before the section that defines it has been
fully executed.

29.2 The prologue section

For the sake of illustration consider a fictitious style-file whose prologue section consists
of the following lines.

#

#,file generated by, <program>

#, ,,<back>

# on <full_time>

#

<statement_loop><statement_sub_loop># <sub_statement>
<end><end>#

#

utsum,:=,0

This description is processed as follows. The program starts with an empty output string,
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as already mentioned, and then line 1 tells it to add a ‘#’ as well as a newline,'? which is
always added when the end of a line is reached. Line 2 instructs the program to add another
20 characters (shown), then to perform the action determined by the keyword <program>,
and finally to add another newline. That keyword produces a string that describes the name
and the version of the program; what that string is can be deduced from the actual output
(shown below) generated from the above example (and from a control-file whose contents
may be inferred from that same output).

#

#,file generated by qgraf-3.4.2

#u
#,,0n,,2023/08/14,,01:15:14.387,,+0100
#

# output, =,’d_list’;
#style =, ’sum.sty’;

# model =’ qed’;

#0in = electron[pl] ;

#u,0ut = electron[ql], photon[q2],;
#,loops =13;

#_,loop_momentum = k;

#,0ptions =_,floop, onepi,;

#

utsum,:=,0

The keyword <back> deletes the rightmost character from the output string that is
being built, which may generate an error if the string is empty at that point. That keyword
may appear in any of the sections of the style-file but there should be no interference between
different sections — nor, in the case of the diagram section, interference between different
diagrams. Trailing spaces are ignored, no matter what type of input file is being read — there
is usually some difficulty not only for a user to see them but also for Fortran to read them.
Still, it is possible to output trailing spaces, as exemplified by line 3 of the previous style-file:
after adding one hash character and two spaces, the program will delete the rightmost space
occupying the position and then add a newline, leaving a trailing space. The keyword <back>
may also be used to concatenate consecutive lines from the style-file. For example, the two
input lines

This isa
<back> ;single line !

will be concatenated (the keyword excepted), since <back> will delete the newline that divides
them (as long as the character ‘<’ is in column 1). Thus, a long line can be split into two
or more lines without introducing unwanted newlines in the output-file; one reason for doing
this is that there is a maximum allowed length for any input line.

Next, line 4 instructs the program to add another 5 characters and then (owing to
the presence of the keyword <full_time>) write the current date and time. The keywords
<full_time> and <raw_time> are rather recent additions, described in Seciion2U73.

Line 6 from our example is more interesting. The keyword <statement_loop> tells the

12 To keep the discussion as simple as possible, let us assume that there is a newline
character whose purpose is to mark the end of a line and implicitly the beginning of
the subsequent line, should there be one.
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program to perform a loop'?® (ie a programming loop); whatever is in between that keyword
and the matching keyword <end> is executed once for every statement found in the control-
file, following the same statement sequence (empty lines and annotations are ignored). In
our example, there is a second style-loop nested within the first and defined by the keywords
<statement_sub_loop> and the corresponding <end>. This inner loop is executed once for
each line occupied by the statement that the outer loop defines implicitly (depending on
the iteration step), following the line sequence from the control-file. Moreover, the keyword
<sub_statement> tells the program to add the character string that corresponds to the
statement line defined implicitly by the inner loop, and for the statement defined implicitly
by the outer loop — iteratively, ie one string each time the inner loop is executed. That
string includes neither the newline nor (if present) the statement continuation mark, nor any
trailing spaces.

To sum up, the statements from the control-file can be written to the output-file by
executing two nested style-loops and including the keyword <sub_statement> in the inner
loop; the formatting is somewhat free. In our example, each statement from the control-file
takes up a single line. Nevertheless, if one rewrites that file so that at least one statement
occupies more than one line then the output-file may include something like this:

#0output
#ouu=
#o00°d _list’;

That may or may not be what one wishes to obtain; it should not be difficult to adjust this
kind of output. To present another example, the next two lines of code will format statements
occupying more than one input line into a single output line:

<statement_loop># <statement_sub_loop><sub_statement> <end>
<back><back><end>#

It is no longer possible to print the control-file statements using a single style-loop.
Nevertheless, anything that could be done with the earlier single loop construct should be
possible to do with the two loop construct as well.

There are four exceptional cases for representing printable characters in the style-file,
and they are as follows (the ASCII characters that have to be encoded are on the left-hand
side, and their respective encodings on the right-hand side).

< — <<
> — >>
[ - L
] — 1]

This means that those four characters must be duplicated in the style-file if they are to ap-
pear in the output-file. With this convention it is always possible to distinguish ‘text’ from
keywords. The first two exceptions are related to the use of the characters ‘<’ and ‘>’ in
the delimitation of intrinsic keywords. The square brackets play a similar role in the case of
non-intrinsic keywords, which are derived from the identifiers of user-defined constants and
functions. In fact there is an additional special case, namely that of a trailing space character,
which has already been discussed. This case is a bit different, since it is about always reading
and writing a certain character rather than having to encode it.

13 This type of construct, of which the present kind is not the only example, will be dubbed
a style-loop.
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29.3 The style-keywords <full_time> and <raw_time>

The output produced by the keyword <full_time> should be the ‘full time’ (ie date,
time, and time zone, in ASCII), as provided by the operating system — which means that
the correctness of this output depends on having an appropriately configured environment.
That output should look like this:

2023/08/14 01:15:14.387 +0100

The date format uses the sequence year/month/day, as it is the Fortran standard; the slashes
and the colon signs are added by QGRAF. Alternatively, the keyword <raw_time> produces
a similar output without added characters, eg

20240915 151401.783 +0100

The obvious usefulness of these keywords consists in enabling one to register the creation
time in the file itself — the time set by the operating system can be changed involuntarily if
one is not careful enough (eg when copying the file).

A very good estimate of the real time (or wall clock time) taken by the execution of the
program can be obtained by inserting any of those keywords in both of the above mentioned
sections and then computing the elapsed time from the respective outputs. That elapsed
time might not (fully) include the period of time taken by the operating system in copying
the output-file to the computer disk, as that file is usually created in the RAM and often not
saved at once.

29.4 The epilogue section

The epilogue section may include every keyword allowed in the prologue section, and
no other. Therefore, all the information about the input statements and the version of the
program may be included in the epilogue section instead, or even in both sections.

Recent additions to the scope of the prologue and epilogue sections are discussed in
Bection32771. The style-keywords allowed in these sections are listed in Bection=33. For obvious
reasons the output produced by <diagram_counter> and <diagram_index> depends usually
on which section these keywords are used.
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30. The diagram section

The style-keywords can be divided into two main classes. One class contains what one
may call control keywords; they serve to delimit the output sections, to define the style-loops,
etc, but do not generate information by themselves. In this class we may find keywords like
<diagram>, <statement_loop>, and <end>. The other class includes the keywords that
instruct the program to append information to the output string; these will be called data
keywords. We have already seen a few data keywords, namely <program>, <sub_statement>
and <full_time>, but many more exist.

Data keywords may themselves be divided into local and global keywords. Local key-
words are those that must be used in one of the style-loops, while global keywords have no
such restriction. Global keywords do not have to be constants, for example the keyword
<diagram_index> produces different strings at different stages.

Let us now discuss the diagram section, which is obviously the most important. There
are many keywords that can be used in that section, most of which are data keywords.

30.1 The global keywords
The global keywords are as follows.

e <diagram_index> — a positive integer specifying the order in which a diagram was
generated (ie 1 for the first diagram, 2 for the second diagram, etc), unless an index-
offset has been defined (in which case that offset is added to the natural diagram index).

e <legs> — the number of external fields of the diagram

e <legs_in> — the number of incoming fields

e <legs_out> — the number of outgoing fields

e <local_symmetry_number> — see Becfion 3771

e <loops> — the number of loops of the diagram

e <loops1> — the first (and possibly the only) value in the loops statement

e <loops2> — the second value in the loops statement, if it exists, else the only value

e <minus> — similar to <sign> (see below) if the diagram sign is minus, otherwise it
produces an empty string

e <nonlocal_symmetry_number> — see Becfion 3771
e <propagators> — the number of internal edges of the diagram

e <sign> — the diagram sign (either a plus or a minus sign) that follows from the anti-
commutation rules

e <symmetry_factor> — the diagram symmetry factor (either 1, if there are no symme-
tries, or a fraction like 1/2, or in general 1/n)

e <symmetry_number> — the diagram symmetry number (a positive integer equal to the
reciprocal of the symmetry factor)

e <vertices> — the number of internal nodes of the diagram
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There are five main types of style-loops in the diagram section, and every one of them
is optional. The keywords

<in_loop>
<out_loop>
<propagator_loop>
<vertex_loop>

announce four of those loops, and the keyword <end> closes them. Those style-loops are
executed as many times as there are (respectively) incoming particles, outgoing particles,
propagators, and vertices in the diagram being listed. During the execution of a style-loop
the program prepares itself to examine the relevant class of objects defined by the loop
(ie legs, propagators, or vertices), as well as some other adjacent objects, and then prints
information about them if requested to do so. The fifth style-loop type is defined by the
keyword <ray_loop> and it should always appear nested inside the vertex-loop, like this:

<vertex_loop> ... <ray_loop> ... <end> ... <end>

The ray-loop is needed to tell the program to examine every line incident with the vertex that
is iteratively defined by the vertex-loop. Those five style-loops form the basic tool to access
the local information that defines a diagram, where local information means that it refers
either to the component of the diagram being examined, or to some neighbouring component.
For instance, if the object being examined is a vertex vy then some information regarding the
vertices adjacent to vy is also available at that time, as is the information on any propagators
and external lines incident with vg. However, at that same time, no information about other
(more remote) objects is available, with the obvious exception of the information provided
by the global keywords.

i_loop | o_loop | p_loop | r_loop | v_loop
<dual-field> ° ° ° °
<dual-field_index> ° °
<dual-momentum> ° . ° °
<dual-ray_index> ° °
<dual-vertex_degree> ° )
<dual-vertex_index> ° °
<field> ° . . .
<field_index> ° . ° °
<field_sign> ° ° ° )
<field_type> ° ° ° )
<in_index> °
<leg_index> ° °
<momentum> ° ] °
<out_index>
<propagator_index> . .
<ray_index> ° )
<vertex_degree> ° ° )
<vertex_index> . °
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What remains to be explained here is which local keywords may be used inside which
style-loops, as well as what the keywords stand for. The former of those issues is addressed in
the above table. A given local keyword may be used in a certain loop type if and only if the
respective table entry is marked with a full circle. The loop types have been abbreviated —
i_loop stands for in-loop, r_loop for ray-loop, and so on. It is clear that if a keyword may
be used in the vertex-loop then it may also be used in the ray-loop, although the information
it represents will remain constant while the ray-loop is executed.

The exact definition of a style-keyword depends on the type of loop where it is used.
The keywords allowed in the basic loop types are described next.

30.2 The propagator-loop

The propagator-loop is executed as follows: when the keyword <propagator_loop>
is found the program assigns the value 1 to the loop index ¢, which coincides with the
propagator-index, and prepares itself to examine the propagator with index equal to 1. Then
it outputs the information requested about that propagator (and possibly some other in-
formation, or some fixed characters), until it reaches the keyword <end>. At that point it
increments the loop index to 2, and the rest is easily guessed. The loop terminates when
every propagator has been examined.

To infer what kind of information is available during the execution of the propagator-
loop let us take a look at [Fig. 10, which has been obtained by grouping together the figures
included in but retaining only part of the original diagram, namely propagator 5

and its neighbourhood.
L
10 1

Fig. 10. Some local information available in the propagator-loop: (a) vertex indices,
(b) propagator-index, (c) propagator fields, (d) field-indices, (e) ray indices, and

3

(f) propagator momentum.

A list of the keywords allowed in the propagator-loop is given below. Each entry
includes a keyword, the respective meaning, and an output string generated by that same
keyword. That string is the one that would be obtained in the description of the propagator
shown in (the string is in parenthesis, after the arrow symbol), in which case we may
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identify ¢ with electron and 1 with positron.
Recall that if a propagator is assigned a propagator-index ¢ then the respective fields

(to be noted ®9;—1 and P9;) will have field-indices equal to 2i—1 and to 2i. Generically, let
0; denote the vertex to which ®; belongs (hence j is a field-index, but not a vertex-index).

e <dual-field> — the name of ®3; ( — positron)

e <dual-field_index> — the unsigned integer 2¢ ( — 10 )

e <dual-momentum> — the opposite of <momentum> ( — -k1-k2 )

e <dual-ray_index> — the ray-index of ®o; (in its vertex) (— 1)

e <dual-vertex_degree> — the degree of v3; (— 3)

e <dual-vertex_index> — the vertex-index of 03; ( — 3)

e <field> — the name of ®3,_1 ( — electron)

e <field_index> — the unsigned integer 2i—1 (— 9)

e <field_type> — the field-type of &9, 1 (— 3)

e <field_sign> — the sign of propagator i ( — -)

e <momentum> — the momentum of propagator i ( — k1+k2)

e <propagator_index> — the unsigned loop indexi ( — 5)

e <ray_index> — the ray-index of ®5; 1 (in its vertex) (— 2)

e <vertex_degree> — the degree of ¥9;—; (— 3)

e <vertex_index> — the vertex-index of 99;_1 (— 4)

30.3 The leg loops

There are two types of leg loops, the <in_loop> and the <out_loop>, which are ex-
ecuted once for each incoming (respectively, outgoing) field. The legs of the diagram are,
rather obviously, the main objects that are accessed in those style-loops.

Let r and s be the number of incoming and of outgoing fields. Those fields appear in
the control-file in a certain sequence, and the n*" incoming (or outgoing) field will be noted
in (respectively, ®ot).

To illustrate the keywords available for leg loops, we shall make use of a diagram that
has been used before (in eg Bection 28), whose legs are specified by the following statements.

in = electron[ppl] ;

out = electron[qql] ;
Since r=s=1 (in our example), each keyword produces a single string (below). Consider first
the <in_loop>, where the loop index ¢ runs from 1 to r. Let vi be the vertex that leg i is

incident to, and j the ray-index (with respect to that vertex) of ®i". The field ®" can then
be identified with ®y, ;.

e <dual-field> — the conjugate of <field> ( — positron )
e <dual-momentum> — the opposite of <momentum> ( — -ppl)

e <field> — the name of ®" ( — electron)
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o <field_index> — the field-index of <I>§” (— -1)

o <field_type> — the field-type of ®* (— 1)

o <field_sign> — the sign of ®" (— -)

e <in_index> — the unsigned loop index i ( — 1)

e <leg_index> — the same as <in_index> (in this type of loop) (— 1)

e <momentum> — the momentum flowing into the diagram through legi ( — ppl)

e <ray_index> — the ray-index of ®; ; (ie the unsigned integer j) (— 2)

e <vertex_degree> — the degree of vertex vy, (— 3)

e <vertex_index> — the index of vertex vy (ie the unsigned integer k) ( — 1)
Some of the above definitions have to be changed for the <out_loop>. The loop index i goes

from 1 to s, but the leg index goes from r+1 to r+s. The keyword <field> now produces
outgoing fields, and the momentum direction points outwards. Thus ®, ; is now the conjugate

of Bou,
e <dual-field> — the conjugate of <field> ( — positron )
e <dual-momentum> — the opposite of <momentum> ( — -qql )
e <field> — the name of ®%** ( — electron )
e <field_index> — the field-index of ®¢* ( — -2)
e <field_type> — the field-type of ®¢“* (— 2)
e <field_sign> — the sign of ®“* (— -)
e <leg_index> — the unsigned integer equal to r+i ( — 2)
e <momentum> — the momentum leaving the diagram through legi ( — qqil)
e <out_index> — the unsigned loop index i (— 1)
e <ray_index> — the ray-index of ®; ; (ie the unsigned integer j) (— 1)
e <vertex_degree> — the degree of vertex v, (— 3)

e <vertex_index> — the index of vertex vy (ie the unsigned integer k) ( — 2)

30.4 The vertex-loop and the ray-loop

The vertex-loop tells the program to visit each vertex of the diagram, and the ray-
loop to visit each edge (or possibly half-edge) incident with each such vertex. The indices
associated to these loops are the vertex-index and the ray-index (in the following we will
denote them by i and j, respectively).

A vertex v; of degree d; comprises the fields ®; ;, for j=1,...d;. illustrates
the three possible cases: ®;; can be an external field (left), an internal field that is part
of a propagator joining two distinct vertices (centre), or an internal field that is part of a
propagator built from two fields of the same vertex (right). If, for a given value of j, ®; ; is
an internal field then there is a propagator P,, connecting v; to another vertex v (or else
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connecting v; to itself, in which case we just set k = 7); that propagator also contains another
field — belonging to v, — which is the conjugate of ®; ; and that will be denoted by ® ;.
Note that v;, and ®; are both undefined whenever @, ; is an external field.

7 / \

Pm
Pm
~ ,'/k. S \g/k"_\\v'k e
~ ~ -~
/ q)i,j / q)i,j ch,I \ q)i,j (DH
/ \
- - - V h ~ ~
i

Fig. 11. Basic notation used in describing the vertex-loop and the ray-loop.

In the ray-loop the keyword <momentum> refers to the momentum flowing along the
edge to which ®; ; is attached, in the direction that is shown graphically in by means
of arrows. This graphical rule gives the momentum flowing into vertex v; coming from that
edge, except that if ®; ; is an internal field and ¢ = k then this wording must be made more
precise.

includes part of the same diagram presented earlier — now it shows vertex 1
and its neighbourhood — and will also be used for illustrating the meaning of the keywords
presented below. This time the output of the program given with each entry can be divided
in two cases. For the keywords that do not require the use of the ray-loop the output string
contains a single label, namely the one that corresponds to vertex 1. For the other keywords
the output string is composed of three sub-strings (since the degree of vertex 1 is equal to 3),
one for each ray-index; that means that the execution of the ray-loop is simulated, but the
execution of the vertex-loop is not.

3 1 1
2
-1
1
3
(@) . (b) 2 (c) A
2 _ U K1
v
2 1 U] P1
A
3 N
(d) 3 (e) A ® kipy

Fig. 12. Basic information available in the vertex-loop.
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e <dual-field> — the name of the conjugate of field ®; ;
(— electron positron photon )

e <dual-field_index> — the field-index of ®;; (Fig-11) if that field exists, otherwise
zero (— 1 0 4)

e <dual-momentum> — the opposite of <momentum> ( — k1 -pl -ki+pl)

e <dual-ray_index> — the ray-index of ®j; (ie the unsigned integer [) if that field
exists, else zero (— 2 0 3)

e <dual-vertex_degree> — the degree of vertex vy, if that vertex exists, else zero
(= 3 0 3)

e <dual-vertex_index> — the index of vertex v (ie the unsigned integer k), if it exists,
otherwise zero (— 3 0 4)

e <field> — the name of ®;; ( — positron electron photon )

e <field_index> — the field-index of ®;; (— 2 -1 3)

o <field_type> — the field-type of ®,;, (— 3 1 3)

o <field_sign> — thesignof ®;; (— - - +)

e <momentum> — the momentum flowing into vertex v; coming from the edge with ray-
index j (— -kl pl kil-pl)

e <propagator_index> — the propagator-index of P, (Fig- 1)), ie the unsigned integer
m if it exists, else the field-index of the external field ®;; (— 1 -1 2)

e <ray_index> — the unsigned integer j (— 1 2 3)
e <vertex_degree> — the degree of vertex v; (— 3)

e <vertex_index> — the unsigned integer i (— 1)

Five keywords — <dual-field_index>, <dual-ray_index>, <dual-vertex_index>,
<dual-vertex_degree>, and <propagator_index> — are defined in a peculiar way when
the ray-index j defines an external line. This is done for two main reasons: it either en-
sures compatibility with earlier pre-defined formats or it provides more information than a
straightforward definition would. The core issue is the same: either one does not accept any
of those keywords as valid, or else one must define them ad hoc for the cases where a natural
definition fails to exist (ie for vertices incident with external lines). An additional keyword,
<dual-field>, is defined in a way that is not consistent with the meaning of the prefix dual-
as used in other keywords; in addition, if it were consistent in that regard then it would suffer
from the same problem that the other five keywords do. This problem will hopefully reach
an acceptable status in a future release, as other features become available.

30.5 The style-keywords <new_loops>, <new_partition>, <new_topology>
and <new_elinks>

These four style-keywords are not normal data keywords, as they usually depend not
only on the current diagram but also on the preceding (output) diagram. They always
produce a ‘1’ for the first diagram of every run (this bit may not be repeated below). Note
also the implicit hierarchy, which follows from the diagram generation algorithm.
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The keyword <new_loops> may be useful when the loops statement requests diagrams
for more than one cycle-rank (or number of loops). This keyword produces a ‘1’ in the
following cases (otherwise, it produces a ‘0’):

o when the current diagram is the first output diagram (whether or not diagrams for
more than one cycle-rank have been requested);

o else, when the cycle-rank of the current diagram differs from the cycle-rank of the
previous diagram.

The keyword <new_partition> produces a ‘1’ in the following cases (otherwise, a ‘0’ is
produced):

o when <new_loops> produces (or would produce, if present) a ‘1’;

o else, when the vertex degree partition of the current diagram differs from that of the
preceding diagram.

The output generated by <new_topology> specifies whether or not the topology of the cur-
rent diagram differs from that of the preceding diagram; here, ‘topology’ means unlabelled
topology, with no fields nor associated labels. Thus, a ‘1’ is produced in the following cases
(else a ‘0’ is produced):

o when <new_partition> produces a ‘1’;

o else, when the unlabelled topology of the current diagram differs from that of the
previous diagram.

Finally, <new_elinks> refers to labelled topologies, ie to topologies with labelled external
fields. This keyword produces a ‘1’ in the following cases (else a ‘0’ is produced):

o when <new_topology> produces a ‘1’;

o else, when the configuration of the external fields in the current diagram differs from
the corresponding configuration in the preceding diagram.

As an example of a potential application, one may point out that <new_topology> and
<new_elinks> can be employed to speed-up the diagram topology identification. In addition,
the information that the same topology is shared by multiple (specific) diagrams can often
be exploited to improve the efficiency of the computations that involve large numbers of
diagrams (sometimes even when no topology has been precisely determined).

On the other hand, if the model has a single (self-conjugate) field then <new_elinks>
becomes irrelevant, as it always produces a ‘1’. Also, the usefulness of these keywords might
be reduced to some extent, or even completely, if (say) the output diagrams were arbitrarily
divided among several files, or (worse still) if those diagrams were sorted in a different way.
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30.6 A first survey of output styles

The set of available keywords is certainly not a minimal one. Also, from a strict point
of view, one does not need all of the existing types of loops. The advantage of this abundance
is that one can choose the features that suit one best (for example, some features which are
instantly available could require some extra programming if a minimal set were used).

The main issue concerning the choice of output style is the processing of the expressions
built by QGRAF. The output styles defined by the files sum.sty, array.sty, and form.sty
may serve to illustrate three different approaches. The first one consists in combining all the
symbolic expressions into a single expression, that is, to add them up. Further processing may
be problematic if the number of diagrams is large. In the second approach an array/vector
is defined, each component storing the symbolic expression for a single diagram; then the
processing program reads the whole array and manipulates all the expressions in a single
run. In some cases this may still be problematic, or just inefficient. In the third approach,
which has been used together with FORM [6], the expressions are still kept in a single file but
each expression can be read and processed separately.

Fig. 13. A diagram from QED, and the corresponding field-indices
(the embedded fields are implicit).

Let us now look at the kind of output produced from the style-files array.sty and
form.sty that are part of (eg) the latest package. Although the corresponding output styles
are outdated, a brief analysis of those styles can still be profitable if it provides a basis for
building other output styles. The examples presented below refer to the diagram shown in
[Fig. 13; the file array.sty is used by the first one.

a(l):= (+1)x*

pol(e(-1,p1))*

pol(p(-3,p2))*

pol(A(-2,q1))*

pol(A(-4,92))*

prop(A(1,-k1))*

prop(e(3,-kl+pl))*

prop(e(5,-k1-p2))*

prop(e(7,-kl+pl-q1))*
vrtx(p(4,k1-pl),e(-1,p1),A(1,-k1))*
vrtx(p(-3,p2),e(5,-k1-p2) ,A(2,k1))*
vrtx(p(8,kl-pl+ql),e(3,-ki+pl) ,A(-2,-ql))*
vrtx(p(6,k1+p2),e(7,-k1+pl-q1) ,A(-4,-g2));
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The numbers that appear in the above expression as arguments of the fields are the field-
indices. Four types of style-loops are used. The propagators have a single argument since the
second argument would not contain new information (the second field would be the conjugate
of the first, the second index would be equal to the successor of the first, and the momentum
would be the opposite of the first).

If the style-file form.sty were used instead, that same diagram would be described as
follows.

x——#[ di:
*
1
*vx (p(2),e(-1),A(1))
*vx (p(=3),e(3),A(1))
*vx(p(4),e(2),A(-2))
*vx (p(3),e(4),A(-4))
*
*——#] di:

Here only the propagator-index is used; the two fields with a common argument belong to
the same propagator, and fields whose argument does not match are the external fields. This
notation seems to be insufficient for models that include Majorana fields (the ones for which
the particle and the anti-particle coincide and the field components anti-commute).
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31. Non-intrinsic style-keywords

The previous section discusses intrinsic style-keywords and the kind of output it is
possible to obtain from them. Nevertheless, since it is possible to define parameters for the
fields, propagators and vertices (Becion233), one might want the diagram description to
include such parameters. A non-intrinsic style-keyword is a keyword that derives from some
(user-defined) constant or function. The subject of the present section is on how to define
such keywords and how to include them in a style-file.

31.1 Keywords that derive from functions
Consider once more QED, described as follows.

% propagators
[ electron, positron, -1 ; prop= ’S’, m= ’me’]

[ photon, photon, +1 ; prop = ’P’, m= 'm0’ ]

% electromagnetic vertex

[ positron, electron, photon ; gpow = ’1° ]

Suppose that prop represents the (name of the) ‘propagator function’, and m the ‘propagator
mass’. Coupling that description with the following code (which is assumed to be part of the
diagram section of the style-file)

<propagator_loop> [prop] (<momentum>, [m])*
<end>
leads, in the case of the diagram shown in [Fig. 9, to the following output:
uS(k1,me) *
LP (k1-p1,m0)*
UP (-k2,m0) *
LS (k2+q1l,me) *
US (k1+k2,me) *

This simple example shows how to obtain an output where each propagator type has its own
name, and an appropriate mass as argument. As seen earlier, intrinsic style-keywords are
‘select’ identifiers'* enclosed in angle brackets (the symbols ‘<’ and *>’, in fact). Now we can
see that a function can give rise to a non-intrinsic style-keyword by enclosing its name in
square brackets. This precludes any interference between the two types of keywords, so that
any valid identifier can be used to name a function (though it is probably a good idea not to
abuse that possibility).

It might be worth stressing that the domain of a function is a set of objects from the
model-file, not a set of diagram embedded objects. For example, when the program outputs
an image of prop, it looks only at the field names that appear in the propagator, not (eg) at
the propagator-index; hence [prop] produces the same result for all the diagram propagators
sharing exactly the same field names.

14 Possibly ignoring a ‘dual-’ prefix, that is.
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Whenever appropriate definitions exist, both intrinsic and non-intrinsic keywords can
appear in more than one kind of style-loop. Non-intrinsic keywords may also include the
prefix ‘dual-’ unless they derive from p-functions.

The following table shows which kind of functions are allowed in which type of loop (the
presence of a full circle in a table entry denotes permission, and its absence interdiction). The
strings £f and vf denote generic f-functions and v-functions, respectively; they map fields ¢
and vertices v from the model into strings £f(¢) and vf(r). The string pf denotes a generic
p-function.

i/o-loop p-loop r-loop v-loop
[ff] L] [ ] °
[dual-ff] ° ° °
[pf] ° ° °
[dual-pf]
[vf] ° ° ° °
[dual-vf]

The definitions of the generic keywords listed in the above table depend on the style-loop they
appear in, but it is possible to present unified definitions using a few intrinsic loop-dependent
keywords. Here they are:

o [ff] — the string ££(¢) where ¢ is the field that <field> refers to

e [dual-ff] — the string £f(¢) where ¢ is the field that <dual-field> refers to

e [pf] — the string pf(¢) where ¢ is either of the fields denoted by <field> and
<dual-field>

e [vf] — the string vf(r) where v is the interaction vertex whose vertex-index is given
by <vertex_index>

e [dual-vf] — the string vf(r) where v is the interaction vertex whose vertex-index is
given by <dual-vertex_index>

Note that using [dual-vf] in the ray-loop would lead to problems. The issue is linked to
the fact that some intrinsic keywords have abnormal definitions in this type of loop, and will
hopefully be resolved in a later release.

31.2 Keywords that derive from constants

The constants declared in the model-file give rise to style-keywords too, and these
may appear in any section of the style-file. For example, to the constant model corresponds
the (non-intrinsic) keyword [model].
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32. Latest additions and extensions

32.1 The style-keywords <loops1> and <loops2>

As the loops statement can now set a range for the number of loops (or cycle-rank) of
the generated diagrams, eg

loops = 2 thru O ;

it follows that the keyword <loops> may not produce a fixed output. The keywords <loops1>
and <loops2>, which can be used in any section of the style-file, produce (respectively) the
first and the second value that appear in the loops statement; if only one value is present
then that is the value produced by either keyword.

32.2 The style-keyword <index_offset>

The keyword <index_offset> outputs the value declared in the index_offset state-
ment, if there is one, else ‘0’. It may appear in any section of the style-file.

32.3 The style-keyword <loop_momentum>

This keyword may appear in any section of the style-file, and outputs the identifier
declared in the loop_momentum statement; an error will occur if no such statement is present.

32.4 The style-keyword <zero_momentum>

This keyword outputs the identifier declared in the zero_momentum statement, if any,
else the character ‘0’. It can be used in any section of the style-file.

32.5 More general prologue and epilogue sections

A restricted version of the style-loops <in_loop> and <out_loop> is now allowed in
the prologue and epilogue sections. Naturally, in these sections the style-keywords allowed
in those loops cannot depend on any diagram, hence some keywords have to be excluded

Those loops can be used to restate the basic definition of the input scattering process
in a format recognized by the program (computer algebra system, say) that is going to
process the output-file. Some additional information about the external fields, present in the
model-file, can be produced as well. Specifically, the following information can be added or
reformatted:

o the input process — ie the external fields and their momenta;

o other properties of the external fields — eg sign, index, type, values of f-functions and
of p-functions.

There are a few more possibilities not related to fields, provided by some recently introduced
style-keywords:

o the value(s) appearing in the loops and index_offset statements;

o the identifier(s) declared in the loop_momentum and in the zero_momentum statements.

Recall also that the constants of the input model can be used in any section of the style-file.
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32.6 The style-keyword <diagram_counter>

The style-keyword <diagram_counter> outputs the number of diagrams generated in
the current run, up to the moment when the respective output is to be produced.

The exceptional definition of <diagram_index> in the epilogue section will be cancelled
with the next stable version, so that the output produced by this style-keyword is always
the sum of the outputs of <index_offset> and <diagram_counter>. Each of these three
keywords will then be able to be used in any section of the style-file.

32.7 The style-keywords <local_symmetry_number> and
<nonlocal_symmetry_number>

The keyword <symmetry_number> produces a positive integer equal to the reciprocal of
the symmetry factor. That integer can be written as a product of two others, however. Let
Aut(D) be the automorphism (ie ‘symmetry’, permutation) group of diagram D, and Aut, (D)
the subgroup of Aut(D) consisting of those automorphisms that leave every vertex fixed —
that is, those symmetries that only involve permuting parallel propagators or ‘flipping’ self-
loops. These are the kind of symmetries that may be called local.

The keyword <local_symmetry_number> produces the order of Aut,(D) and the other
keyword, <nonlocal_symmetry_number>, the order of the quotient group Aut(D)/Aut, (D).
Those two integers provide some basic information about the origin of the symmetry factor:
if |Aut,(D)| > 1 then (non-trivial) local symmetries exist; if |Aut(D)/Aut,(D)| > 1 then
there are (non-trivial) non-local symmetries. Those two cases may co-exist, obviously.

32.8 The style-keyword <field_sub> and its dual

The keyword <field_sub> (where sub stands for subscript) produces a variant of the
field-index, only it is always positive. It may help simplify the generation of (eg) space-time
indices for fields and momenta.'® The set of values generated by this keyword is seldom a
collection of consecutive natural numbers, but that should hardly be a problem.

Let r and s denote the number of incoming and of outgoing fields of the input process,
and t = max(r, s+1). For an external field, <field_sub> produces the absolute value (ie the
opposite) of the output of <field_index>. For an internal field, <field_sub> produces the
result of the sum 2t +<field_index>.

The dual keyword <dual-field_sub> can be used only in the propagator-loop and in
the ray-loop (just like <dual-field_index>), and its output consists in the result of the
sum 2t +<dual-field_index> unless <dual-field_index> produces a zero, in which case
it outputs a zero as well (this may occur only in the ray-loop). Thus, <dual-field_sub>
may produce a zero in the ray-loop, but not in the propagator-loop.

The expected usage should probably be as follows: <field_sub> in the leg loops
(in-loop and out-loop) and possibly in the ray-loop; <field_sub> and <dual-field_sub>
in the propagator-loop, to ‘link’ the indices produced in the other loops.

Although it would have been possible to have a slightly more compact range for the
output of <field_sub>, there appear to be two minor advantages as well, at least for
debugging purposes. One, in every instance, the parity of the outputs of <field_sub> and
of <field_index> is the same, and that also holds for their duals. Two, one can tell from

15 Many users must have been doing something of the kind already, of course (as well as
the kind of indexing enabled by the momentum-loop construct, described next).
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the set of outputs of <field_sub> which fields are internal or external (and even incoming
or outgoing), given that the subscripts of the internal fields (if any) form a special set of
natural numbers — namely a set of even size consisting of those consecutive subscripts with
the largest values, separated from the rest by a 'gap’ (of size one or two). If there are no
internal fields then either there is no such gap or there is a single number above the top gap.
Anyhow, the identification of the external fields can then be based on the individual outputs
of <field_sub> — this is similar to the corresponding identification based on the output(s)
of <field_index> since it is just a matter of multiplying the output values by —1.

32.9 The style-keywords <momentum_loop>, <momentum_term> and its dual

The keyword <momentum_loop> sets a style-loop for the terms of the expression that
would be produced by <momentum>, enabling a more complex output than the one provided
by the latter keyword. The momentum-loop can be nested within either the ray-loop or
the propagator-loop. The number of iterations is equal to the number of (nonzero, reduced)
terms in the expression for the respective momentum if that momentum is nonzero, and is
otherwise equal to 1.

The style-keyword <momentum_term> produces one term in each iteration, as if ex-
tracted sequentially from the output of <momentum>. Its dual <dual-momentum_term> also
exists. In general, the keyword <momentum> can be replaced by the following construct.

<momentum_loop><momentum_term><end>

Now, each momentum term can be ‘decorated’. The main role of the zero_momentum state-
ment is to make the following kind of code

<momentum_loop><momentum_term>~{mu<field_sub>}<end>

produce consistent output, without generating dubious expressions like ‘0~{mu2}’, for null
momenta. For example, when the style-keywords <momentum> and mu<field_sub> produce
(respectively) the expressions k1-p1 and 7 then the latter loop construct should produce

k1" {mu7}-p1~{mu7}

Moreover, assuming that k0O denotes the (declared) zero-momentum identifier then the same
code should produce (eg)

k0~ {mud}
when a null momentum is found.

Thus, using the momentum-loop, it is possible to generate valid expressions in which
any momentum term has a ‘space-time’ index. The typical k2 —m? denominator can be con-
structed as well, though not in its simplest form. Although the initial size of the expressions
for the amplitudes will tend to increase, the overall impact should be almost negligible unless
the number of generated diagrams is quite large and the output of the program has to be
stored in a file (and presently a new approach is emerging).

For now, <field_sub>, <field_index>, <propagator_index> and <momentum_term>
are the only loop-dependent style-keywords allowed in the <momentum_loop>. Other style-
keywords might be enabled later, should they be useful.
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The (extended) list of style-keywords for the prologue and epilogue sections:

<back>
<diagram_counter>
<diagram_index>
<dual-field>
<dual-momentum>
<end>

<field>
<field_index>
<field_sign>
<field_sub>
<field_type>
<full_time>
<in_index>
<in_loop>
<index_offset>
<leg_index>
<loop_momentum>
<loopsi1>
<loops2>
<momentum>
<out_index>
<out_loop>
<program>
<raw_time>
<statement_loop>
<statement_sub_loop>
<sub_statement>

<zero_momentum>
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34. The list of intrinsic style-keywords for the diagram section

The keywords to be used when defining the style-loops:

<end>

<in_loop>
<momentum_loop>
<out_loop>
<propagator_loop>
<ray_loop>

<vertex_loop>
The keywords that do not depend on the style-loops:

<back>
<diagram_counter>
<diagram_index>
<index_offset>
<legs>

<legs_in>
<legs_out>
<local_symmetry_number>
<loop_momentum>
<loops>

<loopsi>

<loops2>

<minus>
<new_elinks>
<new_loops>
<new_partition>
<new_topology>
<nonlocal_symmetry_number>
<propagators>
<sign>
<symmetry_factor>
<symmetry_number>
<vertices>

<zero_momentum>
The keywords that can be used only in a style-loop, but which do not have a dual:

<field_sign> <leg_index>
<field_type> <out_index>

<in_index> <propagator_index>
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The keywords that can be used only in a style-loop, and which have a dual (at least some-
times):

<field>
<field_index>
<field_sub>

<dual-field>
<dual-field_index>
<dual-field_sub>
<momentum> <dual-momentum>
<momentum_term> <dual-momentum_term>
<ray_index> <dual-ray_index>
<vertex_degree> <dual-vertex_degree>

<vertex_index> <dual-vertex_index>

Next, an updated table showing which (loop-dependent) keywords can be used inside which
style-loops.

i_loop | o_loop | p_loop
<dual-field> ° ° °
<dual-field_index>
<dual-field_sub>
<dual-momentum> ) °

v_loop | r_loop | m_loop

<dual-momentum_term> °

<dual-ray_index>

<dual-vertex_degree>

<dual-vertex_index>
<field>
<field_index>
<field_sign>
<field_sub>

<field_type>

<in_index>

<leg_index>

<momentum>

<momentum_term>

<out_index>

<propagator_index>

<ray_index>

<vertex_degree>

<vertex_index>

NB: Additional (loop-dependent) style-keywords may be allowed in the momentum-loop
should that turn out to be useful.




94

Part V — Other topics
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35. Command-line arguments

The command-line interface can be used to pass a few basic instructions to the pro-
gram. The options described below include typically two leading hyphen-minus characters
(eg —-version), but it should be possible to use only one.

Some additional options that can be used in the conversion of input files to the latest
specifications, for use with qgraf-4, are described in Becfion 1]

35.1 Defining the name of the control-file

For a normal run in auto-mode, the name of the control-file should be defined as a
command-line argument, eg

gqgraf a_control-file

In this example the program will try to read the file a_control-file located in the current
directory. The restrictions described in Bection 49 apply.

35.2 The option --version

Executing the command
ggraf --version

should result in the program outputting its own name and version (typically left-aligned on
the standard output and terminated by a newline), and then exiting at once. No additional
options nor arguments should be present.

For example, the character string produced by the latest version should be

ggraf-4.0.5
35.3 The option --no_extra_chars

With qgraf-4, some ‘non-standard’ characters (namely the Tab character and printable
characters from certain 8-bit extensions of ASCII) should be tolerated in annotations (in any
input file), if any such extension is supported by the compiler (and by the operating system).
As there are multiple ASCII 8-bit extensions, of which at most one will be supported, it is
not a very good idea to (eg) distribute model-files that include such characters — they should
probably be used only ‘privately’ (the Tab is an exception, since it is a 7-bit character).

Nevertheless, if (whatever the reason) one wants to make sure that the input files
contain no ‘non-standard’ characters, the command-line option --no_extra_chars enforces
a run-time error whenever any such character is found.
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36. The display-output

In what follows it will be assumed that the config option noinfo is not used, otherwise
(ie typically) the display-output would be suppressed (Bectiond).

36.1 The ‘normal’ display-output

Let us assume first that the program runs uneventfully (that is, issuing neither error
messages nor ‘alerts’). In that case, the first part of the display-output shows the version
of the program and the statements found in the control-file. After that, though in verbose
mode only, some basic information about the input model is displayed, eg

sectors: 1+ (P) 3 (V)
propagators: (8) 2 (N+) 3 (C+) 1 (N-) 2 (C-)
vertices: (17) 3710 4°7

The first of those lines is displayed only if some sector is defined in the model-file. In this
example the input (sub)model contains 1 propagator-type sector and 3 vertex-type sectors.
If the model statement includes the name of a submodel then those two numbers refer to that
submodel. A plus sign may follow each such number, indicating that there exist (respectively)
propagator and vertex statements that are not in any sector block.

The subsequent line shows the number of propagators of the input (sub)model, as well
as the respective subtotals per propagator-type, according to the following rules:

o the letter ‘N’ refers to ‘neutral’ propagators, ie those for which the particle is equal to
the anti-particle;

o the letter ‘C’ refers to ‘charged’ propagators, ie those for which the particle and the
anti-particle differ;

o the signs ‘+” and ‘-’ denote whether the propagators are defined in terms of commuting
or anti-commuting fields.

For example, the propagators of Dirac fermions (and of some ghost fields as well) contribute
to the coefficient of (C-), while the propagators of Majorana fermions contribute to the
coefficient of (N-). In the above example, the model-file defines a total of 8 propagators (5
‘bosonic’ and 3 ‘fermionic’); two of those bosonic propagators are neutral (string ‘2 (N+)”)
and the other three are charged (string ‘3 (C+)’); in the case of the fermionic propagators,
one is neutral and two are charged.

Recent versions differentiate between ‘true-propagators’ and ‘non-propagators’: if a
statement includes the keyword external then it counts as a ‘non-propagator’, otherwise as
a ‘true-propagator’. An extra line may then be displayed, eg

non-propagators: (1) 1 (N+)

propagators: (7) 1 (N+) 3 (C+) 1 (N-) 2 (C-)
Those numbers are mutually exclusive — in this second example the definition of the input
(sub)model includes 8 propagator statements too.

The third displayed line (in the first example) shows the number of vertices of the input
(sub)model and the respective subtotals per vertex degree (there is a total of 17 vertices, of
which 10 are cubic and 7 are quartic).
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What comes next (in either info or verbose display-mode) is the information about
the number of connected diagrams for each compatible vertex-degree partition and (possibly)
for each number of loops. An example follows, for which it is implicit that the respective

control-file includes a statement of the form ‘loops = 1 to 2 ;.

#loops v-degrees #diagrams subtotals
1
- 471 1
372 - 2
3
2
- 472 e 2
372 471 . 12
374 - R 6
20
total = 23 connected diagrams

In this example, there are two possible partitions for 1-loop diagrams: 3°2 (diagrams with
exactly two vertices, both cubic) and 4~1 (diagrams with exactly one vertex, but a quartic
one). The corresponding numbers of diagrams are 2 and 1, and the (1-loop) subtotal is 3.
Then, the same kind of information is shown for 2-loop diagrams.

Lastly, the total number of generated diagrams is shown (this part of the output can be
slightly modified when a count_to statement is present). The subtotals column may be
omitted when the additional information that would be provided is completely redundant (ie
when the exact numbers that would be displayed already appear in the #diagrams column).

36.2 Obviating the diagram generation

Sometimes the program is able to detect that there are no diagrams, either for certain
vertex-degree partitions or even for all such partitions, without having generated any diagram
(work in progress). Those situations can be created by some combinations of options and/or
statements. In such cases (those detected, that is) the display-output looks a bit different.

If the program detects a complete absence of diagrams (for instance, if the diagrams
are required to be trees with self-loops), it will simply display

total = O connected diagrams **

without listing any partial result; otherwise, for each ‘flagged’ partition (ie a partition for
which the program has determined that there can be no diagrams), the respective line shows
only that partition, eg
372 471
In either case, the modified display-output implies that the usual diagram generation was
not attempted.
One other possibility of that kind consists in detecting whether the input process breaks
some particle number conservation rule or, equivalently, some conserved charge — where

conserved means (perturbatively) conserved in the input model, obviously. Still, for now,
there is a separate program (QGRAF-R) which can be used for (eg) that purpose.
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37. An application programming interface (API)

Let us say that QGRAF is in auto-mode when running autonomously (as it has been
usually the case up to now), and in API-mode when being called from another (Fortran or C)
program using the API described in this section. In API-mode, the control-file should include
one or more consecutive style statements, eg

messages = ’'m.txt’ ;

style = ’fl.sty’ ;
style = ’f2.sty’ ;
style = ’£3.sty’ ;

but no output statement. Thus, ‘multiple-output’ (or perhaps ‘multiple-style’) configurations
are allowed too; the maximum allowed number of style statements is exactly the same in
either mode (Bection ). If a message-file is not declared, any such information will be lost.

An output-block is a (possibly long) character string that consists in the output gen-
erated from the instructions included in some (single) section of one of the input style-files,
executed exactly once; in particular, output-blocks may include newlines. In a typical run,
one output-block will be produced for each prologue and epilogue section; in the case of the
diagram section, one output-block will be built for each generated diagram and for each style-
file. If a run produces ng diagrams, and if there are n, style-files, then that run may produce
up to ns(ng+2) non-empty output-blocks. The output-blocks are available in real-time to
the calling program (ie the program that calls the API), which decides what to do with them.

37.1 QGRAF as a sub-program

An object file suitable for API-mode can be obtained from the same downloaded source
file, though compiled with a different set of preprocessor-related options (Eection24). There
is also an header file to be imported by C programs using the API. This interface consists
mainly in a new module comprising some definitions and subroutines, including three interface
subroutines (not to be used together), each of which providing a way to access in real-time
some of the quantities computed by the program — by having their values written on the
output-blocks. These interface subroutines (Bection24) may not only be employed to run
QGRAF ‘step-by-step’ (eg diagram by diagram), treating it as a sub-program, but serve also
as a kind of buffer that isolates the inner workings of QGRAF (which may continue to evolve
independently) from the inner workings of any other computer program that may use QGRAF
in that way. For simplicity, in what follows it will be assumed that there is a single such
subroutine, fictitiously named q_interface.

Using the aforementioned interface consists essentially in calling repeatedly one of the
interface subroutines. Each call should be of the form

call g_interface(sgnll,sgnl2,ccs,csl,lint)

where sgnll, sgnl2 and lint are integer variables (the last one a ‘long integer’), csl is an
integer array (whose size should not be smaller than the number of input style-files), and ccs
is a character string, long enough to hold the generated output-blocks (one per style-file),
that is treated as an array of character strings. For example, the first call should tell QGRAF
to initialize itself, read the control-file (whose filename is input in ccs) and the input files
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declared therein, storing any relevant information, and then return to the calling program.

The arguments sgnll and (specially) cs1 may have to be set before each call is made.
The value of sgnll should be an input-signal, specifying what kind of computation should
be performed. The array csl is ‘multi-purpose’: on entry, it can specify either the maximum
lengths of the various output-blocks, or which output-blocks to construct; on return, it usually
contains the lengths of the output-blocks generated during the call, if any such blocks were
requested, although it may also contain the length of an error message returned in ccs or the
number of generated diagrams. Occasionally, ccs and lint are used as input arguments.

The arguments sgnl2, (not often) lint, and (very often) ccs, csl are set by QGRAF
and returned to the calling (sub-)program; they should be explicit (over-writeable) variables
and arrays. The value returned in sgnl?2 is a return-signal, which provides some feedback
on the call’s success, or lack thereof. When a call requests some output-block(s), and unless
an exception occurs, the (returned) arrays ccs and csl should contain those output-blocks
and their respective lengths (one per entry, following the sequence in which the respective
style-files were declared).

37.2 Basic input-signals

The input-signals tell QGRAF what kind of computation to perform (of which there
exist only a few pre-defined types). The following list should include the most common.
o qisgnl%init
The signal that instructs QGRAF to ‘start-up’ and then read (and parse) the input files;
it should be the input-signal of the first call.
o qisgnlicount
Requests the total number of (connected) diagrams that match the input conditions, if
lint is set to zero (on input). A potentially long call could then take place, but a ‘bounded’
call (similar to what can be achieved with a count_to statement) can be requested by setting
lint as a positive integer.
o qisgnlymsg_count
This signal requests the number of messages suppressed up to that point (since the last
initialization).
o qisgnliprologue
Requests the output-block(s) for the prologue section of each style-file.

o qisgnl¥diagram
The signal that requests the output-block(s) for the diagram generated during the call
(ie for the ‘next’ diagram, if any, even for the first diagram).
o qisgnl¥%epilogue
Requests the output-block(s) for the epilogue section of each style-file.

o qisgnlYstop

Instructs QGRAF to close any open file (the message-file, typically) and terminate the
current job; the option flush is implied. It can be used at any time after initialization, even
if the diagram generation is not finished.
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On entry, and when some output-blocks are requested, each of the entries of csl should also
be an input-signal, though one of a slightly different kind. The next two signals (which can
be interpreted as ‘yes’ and ‘no’) are the only values allowed.

o qisgnliy, qisgnl¥n
The n'" output-block (ie of the type defined by sgnl1, and derived from the n*® style-
file declared in the control-file) is computed if and only if cs1(n) equals qisgnl¥%y.

37.3 Return-signals

A return-signal tells the calling program whether or not the call was successful and
possibly what kind of error occurred. There are two distinct return-signals, given next, that
can be produced in a non-eventful run (that is, when none of the exceptions described further
below occurs).

o qgrsgnljok

The signal returned when the call was successful. If some output (other than sgnl2)
ought to have been produced then the contents of ccs and csl should be valid (unless there
is a bug, of course).

o qrsgnljend

This return-signal means that there are no more output-blocks of the type requested
— or, if returned on the first call of its type, that there are no such output-blocks at all (the
latter situation should not happen except for a call with qisgnl¥%diagram).

There are also three ‘error signals’, defined below, to let the calling program know not only
that some run-time exception occurred but also the generic type of that exception. If there
is a corresponding error message then cs1(1) should be positive, the text of that message
should be stored in ccs (1), and its length should be equal to cs1 (1) — excluding any trailing
control character(s). Only the messages for (detected) run-time errors are passed on to the
calling program (at most one message per run, obviously). The warning messages should be
saved in the message-file, once (and if) it has been opened.

o qrsgnl}%input_error
This is the signal returned when QGRAF detects an error in some input file or in some
call to the interface subroutine.
o qrsgnliq_error
The signal returned when QGRAF detects some inconsistency with its current state,
likely due to a problem with its own code.
o qrsgnljos_error
The signal returned when QGRAF experiences any type of 1/O problem.6
These return-signals should occur rarely. Once problems like lack of disk space and wrong

file permissions are excluded, finding a qrsgnl’,os_error signal should be a very rare event
since it will likely mean that a serious software or hardware error has occurred.

16 This means input/output problem, and includes reading from files and writing to files.
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37.4 Some examples

For interoperability’s sake, and also to avoid some duplication, the types of the variables
shared by (or with) QGRAF are interoperable C-types — ie (i) c_int32_t for sgnll, sgnl2
and csl, (7)) c_char for ccs, and (i7) c_int64_t for lint — even when the calling program
is a Fortran one. In C, the corresponding types are int32_t, char, and int64_t, obviously.
It should be noted that it is not that difficult to generate a set of diagrams whose cardinality
is not representable with int32_t — currently, a few hours of CPU time will be sufficient, at
least if only their count is required. Still, the type chosen for lint should preclude the need
for future adjustments.

The following lines of code show how to initialize QGRAF, using Fortran; the ancillary
files pxq.c and pxq08.c include a C version of most of the examples given below.

sgnll= gisgnl¥%init

ccs(1:121)= "’qgraf.dat’" // c_null_char
csl(:)= int(4096,c_int64_t)

call g_interface(sgnll,sgnl2,ccs,csl,lint)

The encoded name of the control-file, terminated by a c_null_char character, should fit
into the first 120 positions of ccs. Space characters at either end (ie not in the sub-string
delimited by the single quotes), if any, are automatically deleted; other spaces can be deleted
with the config option noblanks.

In that call, the entries of csl specify the maximum allowed lengths for the output-
blocks to be derived from the style-files (one maximum per style-file). In this example, all of
those lengths are equal to 4096. More generally, and at present, each (declared) maximum
should be comprised between 128 and 16384 (ie 27 and 2'*), and their sum should not
exceed (approx.) 46000. In each case, the effective maximum will be equal to the declared
value minus 8. The reserved positions exist as a very minimal precaution against potential
‘overflows’, and also to allow for one or two control characters. Those values will remain fixed
until the subsequent re-initialization.

Still in the same type of call, if qrsgnl¥ok is returned in sgnl2 then the following
information should be returned too: the version of QGRAF (in ccs, starting at position 1 and
terminated by a null character) and the corresponding string length (in cs1(1)).

Recall that the name q_interface is not real. The actual names of the interface
subroutines are given in (Becfion 24).

When an exception occurs, the error message is returned in ccs, its length in cs1(1).
A re-initialization should still be allowed if the return-signal is qrsgnlyinput_error. In
every other case, any subsequent call is returned at once with the original error signal and
the run will probably have to be abandoned.

Every call to gq_interface should be followed at once by a check on sgnl2, for example
if( ( sgnl2 .ne. grsgnljok ) .and. ( sgnl2 .ne. grsgnljend ) )then
call my_error_checking(sgnll,sgnl2,ccs,csl)

end if

where subroutine my_error_checking should decide what to do in case of error.!” The body
of that subroutine might have the following structure.

17 Possibly notify the job owner and then stop...
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if( sgnl2 == grsgnlios_error )then
(...)

else if( sgnl2 == qgrsgnlinput_error )then
(...)

else if( sgnl2 == qrsgnllq_error )then

(...)

end if

To do a ‘counting run’ one may proceed as follows.
sgnll= gisgnlicount
lint= 0
call g_interface(sgnll,sgnl2,ccs,csl,lint)

Setting lint to zero makes the call ‘unbounded’ (ie the program will try to generate every
possible diagram), but setting lint as a positive integer would automatically make the call
‘bounded’, with 1int becoming the upper bound for the number of diagrams to be constructed
(this would be the equivalent of having a count_to statement in auto-mode). The number
of (actual) generated diagrams should be returned in lint. This kind of call should be made
before requesting any output-block for either the diagram section or the epilogue; if it is made,
QGRAF will have to be re-initialized (possibly using the same control-file) before producing
any output-block for the diagram section.

Once re-initialized, QGRAF should once again be able to construct any requested
output-block(s). In the case of the diagram section, there should be a call per diagram
— until the signal qrsgnliend is returned. Meanwhile, any requested set of output-blocks
will be returned in ccs as if this string had been divided into sub-strings with fixed lengths,
specified in the previous initialization; the actual lengths of the output-blocks will be re-
turned in csl. The following lines of code show how to request (all) the output-blocks for
the prologue(s).

sgnll= gisgnlyprologue
csl(:)= qisgnliy
call g_interface(sgnll,sgnl2,ccs,csl,lint)

To obtain the output-blocks for the diagram section, one might do the following.
sgnl2= grsgnliok
do while( sgnl2 == qrsgnliok )
sgnll= qgisgnl¥diagram
csl(:)= qisgnliy
call q_interface(sgnll,sgnl2,ccs,csl,lint)
if( sgnl2 == qrsgnljok )then
(...)
else if( sgnl2 == qrsgnliend )then
(...)
else
call my_error_checking(sgnll,sgnl2,ccs,csl)
end if
end do
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The first case of that if block corresponds to a successful call (ie a new diagram has been
generated), and the respective code should describe what to do with each output-block. The
second case corresponds to the natural end of the current diagram generation job.

Not all three sections of the style-file have to be made use of, but the usual relative
precedence should be observed. For example, the output-blocks for the epilogue can be
requested (once) at any time but then it is not possible to request output-blocks for any of
the other sections without re-initializing.

The next example shows how to obtain the number of warning messages suppressed up
to that point, whether or not saved in the message-file.

sgnll= qisgnlymsg_count
call g_interface(sgnll,sgnl2,ccs,csl,lint)

That number should be returned in lint.

One last example shows how to instruct QGRAF to close any open files(s). If no excep-
tion occurs (and if there are no bugs), only the message-file may be open when that call is
made.

sgnll= qisgnl¥%stop
call g_interface(sgnll,sgnl2,ccs,csl,lint)

The number of suppressed warning messages (since the previous initialization) is returned in
lint. After returning, QGRAF will wait for the next re-initialization, if any. As always, it is
necessary to check whether some error occurred.

37.5 Advanced input-signals

A second set of input-signals (to be implemented, except qisgnl%hold) allows for a
more efficient diagram searching, assuming that it is possible to utilize QGRAF’s algorithmic
structure — ie the fact that the diagram generation involves four hierarchical levels (cycle-
rank, vertex-degree partition, unlabelled topology and labelled topology). These signals
should not be needed in most situations — they are intended for demanding, CPU-intensive
cases, with unusual selection criteria.

Suppose one is interested in finding a set of rare diagrams (as a fraction of the total)
that satisfy some special criteria not implemented in QGRAF. Then, if the total number of
diagrams to be constructed is potentially huge, it would be very convenient to avoid generating
as many irrelevant diagrams as possible. For example, if the topology of the current diagram
cannot be used to generate a relevant diagram, one would want to skip every other diagram
with that topology. That is the basic idea that lies behind the following signals, which may
be chosen at will — one at a time, of course (see also Bection 301). Still, the only signal that
can set the diagram generation in motion is qisgnl’,diagram.

o qisgnlielinks

This signal instructs QGRAF to ignore any further diagram with a labelled topology!®
equal to that of the current diagram, and thus to produce the first subsequent diagram for
which <new_elinks> produces a ‘1’.

I8 This refers not only to the underlying graph but also to the external field conguration.
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o qisgnl¥%topology

This signal is similar to the previous one, except that it refers to the unlabelled topol-
ogy (hence the ‘jump’ can be longer). It request the first subsequent diagram for which
<new_topology> produces a ‘1’.

o qisgnlypartition

In this case the next diagram with a new vertex-degree partition is requested.

o qisgnl%loops

This signal requests the next diagram with a new cycle-rank (ie number of loops).

Each of the last four signals can be used with nearly every call — that is, after the diagram
generation has been initialized, and before qrsgnliend is returned. One additional signal
exists, as detailed next.

o qisgnlkhold

This input-signal tells QGRAF to construct additional output-blocks for the latest gen-
erated diagram — in accordance with the (new) values of the entries of cs1 — instead of
trying to find a subsequent diagram.

This last signal may sometimes be used to reduce the (total) number of output-blocks to
be constructed since it allows the calling program to make more than one call for the same
diagram, with different (typically ‘orthogonal’) csl arrays. For example, if the selection
criteria can be applied without generating all the output-blocks for the current diagram, it
can be more efficient to delay the construction of some output-block(s) until that diagram is
found to satisfy the required criteria (and to skip their construction otherwise).

37.6 Further details

In API-mode, there are some constraints on the control-file: neither the statements
count_to
output
nor the config options related to the display-mode and (strictly) to output-files, ie
info
1f
noinfo
nolist
verbose
are available; moreover, the following options should not appear in the options statement if
any of the advanced input signals is to be used (qisgnl%hold excepted).
topol
new_elinks
new_topology
new_partition

new_loops
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In some calls, additional information is returned for cross-checking purposes. On an
initialization call, the number of style-files is returned in 1lint (in principle, that number is
known to the calling program since the control-file must be constructed in advance). On a
call that returns qrsgnl_end, the number of generated diagrams is returned in lint.

The output-blocks may or may not contain ‘newlines’, depending on what the style-files
specify. QGRAF can construct long output-blocks without such characters. A section of the
style-file may consist of many lines, but inserting <back> at the start of each line (except
the first) leaves only the terminating newline. In API-mode, however, trailing newlines are
automatically erased, and a single null character is added for compatibility with C (the
null character does not contribute to the lengths returned in csl). Deleting any non-trailing
newlines can be achieved with the config option no_ntnls.

37.7 The ancillary files

The latest ‘pack’ includes (in directory api_mode) three examples of interfacing, one

written in Fortran and two in C, respectively

pf08.£08

pxq08.c

pxq.c
Hopefully, some insight will be gained by perusing their code and utilizing (one of) them
as template(s). All of those examples use distinct interface subroutines, that is, each of the
three currently available interface subroutines is used by one of those programs. It is very
important to pick the right subroutine for the calling program, of course; Bection 24 includes

further details. C programs should include the header file qgraf .h by means of a preprocessor
directive, eg

#include "qgraf.h"

As already mentioned, use is now made of (a few, simple) preprocessor directives and of the
GNU preprocessor. With the help of the make command, executed in the directory that
contains the Makefile, a binary (that also includes QGRAF) can be created for each of the
above source files, eg

make pxq
Once created, they can be run on a terminal, for instance

./pxq
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38. The diagram sign

The diagram sign has been perhaps QGRAF’s least understood feature. This state of
affairs seems to derive mainly from the program’s ignorance about (or rather, avoidance of)
graphical rules — the most well known being ‘for each fermion loop, multiply the amplitude
by —1’, of course. Then, what does QGRAF do?

The explanation for there being a possible relative minus sign between two distinct dia-
grams (for the same scattering process) follows directly from Wick’s theorem in the presence
of anti-commuting fields, and that is precisely the approach implemented in the program.
To compute the sign of a Feynman diagram D (hereafter, we will naturally assume that D
depends on some anti-commuting fields), the program starts by placing side by side (as a
product) the vertices into which D can be decomposed. For example,

Fi=(UyU_ 1 Az) (V_o Uy As) (U1 Uy Ag) (Ug Uy Ay)

is the vertex product for the diagram shown in [Fig. 14. The field ordering in each vertex
is assumed to coincide with that of the respective vertex statement given in the model-file;
the subscripts, which match the labels in that diagram, are the field-indices computed by
the program. Those vertices have been reduced to a product of ‘plain’ fields, as the other
contributions (coefficients, space-time indices, and so on) are not needed here.

Fig. 14. A diagram (in QED) and its field-index numbering.

In Fy, the vertex sequential order is irrelevant because each vertex is (for this purpose)
a commuting quantity, as it comprises an even number of anti-commuting fields. In contrast,
the relative ordering of the anti-commuting fields in each vertex is clearly relevant. In any
case, one has to choose an (arbitrary) initial vertex ordering to do the computation, and after
that choice is made no vertices will be permuted — only a sequence of simple transpositions,
each one involving exactly two fields, will be performed. If one discards the commuting
fields, which clearly play no role in the present computation, F; will be reduced to the

ordered product B B B B
Fo =Wy W_ W_o Uy Wyg Uy Wg Uy

which may also be regarded as a sequence. The next point to consider is that, whatever the
type of field, the propagator ordering chosen by the program is always of the form

(Pog—1 Dog)

where the subscripts denote (internally generated) field indices. Thus, in our example, the
internal anti-commuting fields will be paired into the following sub-sequences

(Uy Ua), (V7 Ug), (g Wyp).



107

For explanatory purposes, it is useful to constrain the field transpositions allowed in this part
of the computation; without loss of generality, we shall require that the propagator pairing be
achieved without changing the relative ordering of the external fields. With this restriction,
once F} is fixed the parity of the propagator pairing operation will be well defined for each
diagram. If this step takes ¢, transpositions, the contribution to the sign will be (—1)'». The
internal fields are then deleted, as they are no longer needed. In our example, since an odd
number of transpositions is required to transform Fj into the sequence

Fy=U_1 U_ Uy Uy Uy Ug Uy Uy
we obtain a factor equal to —1.

The last part of the computation involves the external fields. Here, QGRAF assigns
(arbitrarily) a positive sign to its generic ‘reference’ sequence, namely
ol ouf o P, L DU DY
where r and s denote the number of incoming and of outgoing fields, and the subscripts are
the field-indices (which are negative, since the fields are external). Any occurring sequence
of external fields obtained in the previous step is then compared with the reference sequence
(divested of its commuting fields), and the parity of the number of transpositions ¢. needed

to convert one sequence into the other is determined. Hence a new factor (—1)% is generated,
and the diagram sign is then defined as (—1)% *te.

In our example, once the internal fields are dropped from F3 we are left with the
sequence

F4 = \I/_l \if_g
which can be converted into the reference sequence using a single transposition. Therefore,
as (—1) = (—1)' = —1, QGRAF produces the sign + for that diagram.

In comparison with a graphical rule, the preceding definition of diagram sign might seem
(to a human, and concerning evaluations ‘by hand’) somewhat complex, even error-prone;
nevertheless, it is closely related to Wick’s theorem, and there is no difficulty whatever in
programming it. Still, users who habitually rely on graphical rules might find some of the
consequences of that definition rather unexpected. For that reason, let us take a look at a
number of problems that may arise out of some misunderstanding or mere inattention.

38.1 Problem 1
Suppose we have defined QED as follows,

% propagators
[ photon, photon, +1 ]
[ positron, electron, -1 ]
% vertex
[ positron, electron, photon ]
where electron corresponds to a Dirac field ¥ and positron to ¥. The usual statement for
that fermionic propagator should be
[ electron, positron, -1 ]

as this is the one that corresponds to the ordered contraction (¥ W). The reason why the
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former statement can be a problem is that QGRAF will then sort the internal anti-commuting
fields in a different way, and may thus compute a different sign. Then, if each propagator
expression in the program’s output is replaced by the usual Feynman rule, the result can be
an incorrect amplitude. Declaring the ‘wrong’ vertex may lead to similar problems.

In QED, as defined above, using the conventional propagator expression does not always
lead to problems, due to the following: for a fixed scattering process, and a fixed order of
perturbation theory, every diagram has the same number of fermionic propagators; moreover,
the number of fermionic propagators in n-loop diagrams and in (n+1)-loop diagrams differs
by two. Nonetheless, there exist many models for which one can find two diagrams (for the
same process) with the same sign if the fermionic propagators are declared in one way, and
opposite sign in the other.

38.2 Problem 2

Suppose we want to compute the amplitude of some scattering process that involves
fermions (in the initial and/or final state), both at leading order and at some higher orders.
We declare

in = electron[pl], positron[p2] ;

out = photonlqll, Z[q2] ;

loops = 0 ;
for the leading order, and

in = positron[p2], electron[pl] ;

out = photonl[qll, Z[qg2] ;

loops =1 ;
for the next-to-leading order. If the two initial fermion states are permuted, the parity (—1)
changes (for every diagram). Oops, the next-to-leading order amplitude is to be added to the

leading order amplitude, but now every relative sign between a 0-loop diagram and a 1-loop
diagram will be wrong.

38.3 Problem 3

We have a model with both Dirac and Majorana fermions, say. Then we choose the
scattering process and the order of perturbation theory, and have QGRAF write down the
corresponding ‘amplitude’. Now we pick the (commuting) expression for that amplitude,
which includes the diagram signs computed by the program, and decide to ‘re-orient’ some
fermionic propagators in that expression. For example, we make some substitutions such as

prop( Psi(3,k1), Psi(6,-k1) ) —  prop( Psi(6,-k1), Psi(3,k1) )

where either of these expressions denotes a propagator function for a Majorana fermion Psi.
That can also be problematic since those signs were computed by assuming a certain field
ordering (eg for the propagator fields). If the redefined propagators had been used instead
then different signs might have been produced for some diagrams.

We might decide also to exchange some arguments describing that same fermion, this
time in some sub-expressions representing vertex (Feynman) rules. For instance, we might
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have an amplitude that includes a sub-expression such as
vertex( Psi(5,k1), Psi(2,-k1-k2), Phi(7,k2) )

where Phi is a bosonic field, and then we (simply) exchange the arguments Psi(5,k1) and
Psi(2,-k1-k2). Since those fields are identical there is no problem, right? Not really, that
exchange would have affected the computation of (—1)%.

38.4 Problem 4

The Path Integral formulation of Quantum Mechanics ‘says’ that the amplitude for a
given scattering process should include the contribution of every ‘path’ leading from the initial
to the final state (in the corresponding interpretation, that is why one adds the contributions
of multiple Feynman diagrams, of course). Let us consider an experiment that has various
possible outcomes, and for which — as a result of the measuring apparatus not being precise
enough, say — some of the outcomes are not distinguishable from one another. Then, the
amplitude for a certain (measurable) final state can be obtained by adding the amplitudes
for the individual processes compatible with that measurement. In this case, the relative sign
between diagrams for (a priori) distinct processes becomes critical.

The emission of low energy photons in a high energy collider provides a simple example.
Experimentally, a scattering process like

in = electron[pl], positron[p2] ;

out = muon_minus[ql], muon_plus[q2] ;
may often be indistinguishable from (eg)

in = electron[pl], positron[p2] ;
out = muon_minus[ql], muon_plus[q2], photon[q3] ;

specially for small (spacial) momentum |g3|. Here, QGRAF seems to compute the correct
relative sign between the (former) ‘non-radiative’ process and the (latter) ‘radiative’ process,
if the respective statements match as above (one should check all the same, of course).
Nevertheless, since QGRAF does not address that type of problem, other means must be
employed to determine an appropriate global sign for each process. Moreover, any such
adjustments should preferably be (determined and) made at an early stage, to avoid having
to redo as many runs as possible. The sign of an amplitude may often be adjusted by
permuting two incoming (or outgoing) fermions, but that is a minor point.

38.5 Solutions

It is always possible to ignore the sign computed by the program (by omitting any ref-
erence to it in the style-file), although that will require the user to implement some substitute
definition (completely, that is). That seems the best option if one wishes to implement some
sign convention not supported by the program.

Alternatively, if one does not care much about which sign convention is actually used,
but wants nonetheless to be able to perform some substitutions that correspond in practice
to fermionic exchanges, there is another (possibly easier) type of solution which consists
in fixing the problematic substitutions (instead of discarding QGRAF’s sign altogether). The
basic idea is that any substitution involving an odd number of fermionic transpositions should
also generate a compensating factor equal to —1.
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Solutions to Problem 1

There is more than one fix, apart from just using the conventional propagator declara-
tion. For instance, one may use (at the symbolic processing stage) a modified Feynman rule
for the propagator, differing from the standard one by a factor —1. Alternatively, the model
could be redefined by letting ¥ describe the positron and ¥ describe the electron. This
would have to be reflected on the form of the electromagnetic vertex, and one should also
have to consider what would the electric charge constant e define. Similar comments apply
to the non-conventional vertex declaration. Innovation of this kind is seldom a good idea,
as the task of comparing one’s results with existing results can (very likely) become more
difficult; code debugging may also be harder.

Solution to Problem 2

Only the loop order of the diagrams should be changed, obviously. The extended loops
statement might help, but the diagrams will then be listed in the same output-file (hence
they will have to be selected afterwards, depending on the order of perturbation theory being
computed).

Solution to Problem 3

For each fermionic transposition, whether in a propagator or in a vertex, there should
be an additional —1 factor. That type of problem may also occur as a result of using a wrong
substitution rule. Additionally, as (—1)? = 1, it may sometimes happen that ‘“wo wrongs
make a right’ (and that also applies to the other problems).

38.6 Further comments

Graphical rules were invented at a time when Feynman diagrams were generated by
hand, and they allowed the person(s) doing some QFT calculation to easily (ie ‘visually’)
determine a practical diagram sign. Nonetheless, while graphical rules for QED and QCD
are quite simple, they are more complex for other types of models — pure graphical rules
may not even exist. The approach used by QGRAF can be employed in general, irrespective
of the vertex degrees and numbers of anti-commuting fields, although the output may have
to be processed somewhat to obtain expressions of the desired form.

Nowadays, with the use of automatic set-ups being the norm, graphical rules are becom-
ing less relevant. In addition, ‘simplifying’ Wick’s theorem consists in practice in adopting
some (further) convention — while one of the guidelines behind QGRAF has been the adoption
of as few conventions as possible, specially when they are not general enough.

A continued reliance on graphical rules may also induce the belief that the diagram sign
is something much more rigid than it really is. By that, we mean that the sign derived from
any fixed set of graphical rules depends in fact on some convention(s) and/or assumption(s),
which those rules may hide. Lastly, graphical rules do not necessarily solve Problem 4 either.



111

39. Models with explicit propagator mixing

For diagram generation purposes, a model features explicit propagator mixing if there
is at least one field appearing in two (or more) propagator statements. Although this type of
model is not accepted (at least not yet), there is a way to obtain the corresponding Feynman
diagrams — namely, by replacing the original model by an appropriately transformed model,
as described in the following paper.

Feynman graph generation and propagator mixing, I
Comput. Phys. Commun. 269 (2021) 108103.
https://doi.org/10.1016/j.cpc.2021.108103

In general terms, that type of transformation can be described by an algorithm that involves

o introducing new (ancillary) ‘charged’ fields;

o modifying the original set of propagators, to eliminate explicit mixing;

o adding new interaction terms, similar to the existing ones, but depending on the new
fields as well.

Although (as originally described) that algorithm applies directly to models whose propa-
gators do not contribute to the order of perturbation theory (eg their Feynman rules are
independent of the coupling constants), it should be possible to apply it to many models
in which some of the propagators do contribute — namely, by defining appropriate weights
(here, p-functions) in the model-file and then using psum statements.

It is perhaps advisable to let the input process (specified by the incoming and outgoing
fields) be defined in terms of the fields of the original (non-transformed) model only, keeping
the ancillary fields as internal (ie appearing only in propagators). The reason is twofold:
clearly, ancillary external fields are not needed for studying the original model, and using
those fields adds an extra complication, to be described below, which may lead to errors.

Let us consider a Lagrangian density £(¢1, ¢2) that depends on two self-conjugate (real)
fields ¢1 and ¢5, and whose quadratic part includes a mixing term involving both fields, eg

L= 350,010"¢1 + 50,020 ds + D10 + ...

In this case, as shown in Example 4.1 of the above mentioned paper, the transformed model
depends also on a conjugate pair of ancillary fields, to be denoted by ¢3 and ¢4. To convert
the diagrams obtained for the transformed model into the diagrams of the original model,
the internal ancillary fields ¢3 and ¢4 should be replaced as follows:

¢3 — P1, s — Po.

In that paper, there is no discussion concerning the distinction between incoming and
outgoing fields. Implicitly, the definition of u-product entails that every external field is an
incoming field (the opposite convention is allowed, but it is perhaps not as common). As
QGRAF requires the incoming and the outgoing fields to be properly identified, however, one
may find that the previous substitution rules do not necessarily apply to external fields. In
fact, while they are still valid for incoming fields, for outgoing fields one has instead

3 — P2, G4 — P1.
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For example, since ¢3 and ¢4 constitute a conjugate pair, the input process
in = phil([p1] ;
out = phi3[ql] ;
is ‘equivalent’ to
in = phillp1], phi4([p2] ;
out = ;
which (by the former substitution rules) is ‘equivalent’ to
in = phil([p1], phi2([p2] ;
out = ;
which (as ¢ is self-conjugate) is ‘equivalent’ to
in = phil([p1] ;
out = phi2[ql] ;

which should be compared with the initial process. These processes are essentially equivalent,
in the sense that the set of diagrams generated for each process can be easily transformed
into the set of diagrams for any other equivalent process; in particular, those sets have the
same number of diagrams. In contrast, the scattering process

in = phil[p1] ;

out = phid[q1l] ;

is not ‘equivalent’ to the previous ones.
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Part VI — Additional information
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40. Automatic downloads, licensing

It might be useful to have a simple way of automatically downloading a patched version
instead of an outdated version with known problems, or even download a new (minor) version
instead of the previous one. The following version-linking set-up has been implemented.

o any future release will be numbered ‘x.y.z’, that is, using major, minor, and patch
numbers (for instance, the first version of ‘qgraf-4’ should be qgraf-4.0.0);

o a request to download links/qgraf-x.y.tgz (with valid x and y) is converted into a
request for the version qgraf-x.y.z.tgz with the highest (available) z; the end result
should be the latest qgraf-x.y.z for the given x and y.

o a request to download links/qgraf-x.tgz (with valid x) is converted first into a
request for the version links/qgraf-x.y.tgz with the highest y, which will then be
converted by the previous rule;

o arequest to download links/qgraf-x.s.tgz (with integer x and literal s) is converted
into a request for the version links/qgraf-x.y.tgz with the highest y such that
qggraf-x.y has been declared ‘stable’;

o other requests, including those for specific versions, will not be converted (irrespective
of availability);

o automatic downloading requests should now refer to the directory links eg

wget --quiet --user=anonymous --password=anonymous -0 ./qgraf.tgz \
http://qgraf.tecnico.ulisboa.pt/links/qgraf-4.0.tgz

o after each new release, there will be a ‘grace period’ (to be announced, possibly variable)
before the corresponding conversions become effective; that would be coupled with an
optional, automatic message system (see below).

This should not be contentious since it is optional and does not remove existing features. An
‘alert system’, which would allow ‘package owners’ and other users to automatically receive
news and (above all) alerts about the program, is being considered.

Please do not implement or describe openly the (ie any) downloading method in some
webpage, ready for ‘bot use’ (alas, there seems to be more than enough bot generated web
traffic already). The information here provided is for ‘package-scripting’ only (ie for those
packages that rely on this program).

Some versions that are no longer referenced on the website’s Downloads page might
still be temporarily available in the above mentioned links directory. At the time of the
release of qgraf-4.0.5 the convertible requests and their targets are as follows.

links/qgraf-3.4.tgz — qgraf-3.4.2.tgz
links/qgraf-3.5.tgz — ggraf-3.5.3.tgz
links/qgraf-3.6.tgz — qgraf-3.6.10.tgz
links/qgraf-3.tgz — qgraf-3.6.tgz
links/qgraf-3.s.tgz — qgraf-3.6.tgz
links/qgraf-4.0.tgz — qgraf-4.0.5.tgz
links/qgraf-4.tgz — qgraf-4.0.tgz
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and the non-convertible requests are

links/qgraf-3.4.2.tgz
links/qgraf-3.5.3.tgz
links/qgraf-3.6.9.tgz
links/qgraf-3.6.10.tgz
links/qgraf-4.0.5.tgz

40.1 Stable versions and licensing

A stable version is a version that should be expected to be available and supported for
a reasonably long period (five years, at least), within my ability and resources, and assuming
that the present circumstances do not worsen in any relevant way, of course. Note that by
version I mean something like ggraf-x.y where x and y denote the major and the minor
version numbers. Since declaring a version as stable the moment it is released does not seem
to be the best strategy, there will be a delay (of at least five months) so that (i) a better
perspective on the program development may be obtained and (i) there is an additional
opportunity to find and eliminate any remaining bugs, or even to refine or add some feature.
Once a version is declared stable, it should not be modified except for fixing some anomaly
or unexpected behaviour, and even then in a minimal way; that includes both actual errors
and potential errors, ie code that is already known to be erroneous and code thought likely
to lead to problems.

Not every version will be declared as stable and, depending on its usefulness, a stable
version may become unavailable once the appropriate period expires. One idea here is that
some versions are ‘more equal’ than others, and that if some critical bug happens to be found
then the stable versions will be prioritised whilst the non-stable versions could even be pulled
out, temporarily or otherwise. That is why the licensing terms state that packages relying
on QGRAF should be able to use a stable version — not necessarily in an exclusive way. The
interpretation of that part of the licensing terms should be that some available version of the
package should be able to rely on an available, stable version of this program. If the package
dependence is introduced!® at a time when the latest version is not stable, and if no stable
version fulfils the necessary requirements, then it could be acceptable to defer the fulfilment
of that condition until the following stable version is declared — provided the inherent risks
are assumed.

Non-stable versions should be expected to become unsupported, and unavailable for
downloading, two years after the release of the subsequent stable version (but they might be

pulled out for other reasons too).

There is now a provision for re-distributing officially unavailable, stable versions?® in

two cases (see the header of one of the latest Fortran files for details), provided there is no
legal impediment: (7) with (old) packages for which no upgrade is feasible, or (i) with either
new or old packages, should QGRAF’s official website close down. Nevertheless, in case (i)
this provision might not be needed in practice as there is little backward-incompatibility in
qgraf-3, specially at the level typically required by other packages.

19 The relevant date is the release date of that package version, obviously.

20 This means the latest patch version, of course; for example, qgraf-3.4 is stable but,
unless some other patch version is released in the meantime, qgraf-3.4.2 would be
the actual version to re-distribute.
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41. Implementing the new specification

Input files accepted by ggraf-4 are not entirely compatible with those accepted by
qgraf-3.6, hence a conversion tool could be useful. The differences between the respective
specifications have been described in Bection . This section shows how to perform some of
the necessary changes, in some cases using an integrated tool (in development). This tool is
‘temporary’ — that is, it should be deleted at some point. Currently, that tool can do (only)
the following:

o add any required statement continuation characters to model-files and control-files;
o substitute the annotation marks by another such mark (a fixed one, that is), in any
type of input file;

Other features will likely be added later. At least for now, the file to be processed is (roughly)
assumed to be a valid file of the expected type (meaning that its contents are not properly
checked); the tool might evolve, however. On the execution of the commands shown below,
an empty line might be added either at the start or at the end of the new file (or both);
trailing spaces will not be kept.

A bash script (ie file g4in) provided with the latest pack may help one to keep using
current model-files and style-files with qgraf-4.0 (Eection 4TH).

41.1 Converting style-files
The conversion of a style-file can be performed by QGRAF itself, if run with a command
of the following kind.
ggraf --s3to4 styles3/al.sty styles4/al.sty —--percent

The first filename (here, styles3/al.sty) should be the name of the style-file to convert,
and the second the name of the new file. The options --hash and --percent define the
annotation-mark to be used in the new style-file (respectively ‘#’ and ‘%’); one of those
options is required.

41.2 Converting model-files

Similarly, converting a model-file can be done with a command of the following type,
where the conventions are analogous to those that apply to style-files.

qgraf --m3to4 models3/qcd models4/qcd -hash

41.3 Converting control-files

The conversion of control-files is also a partial one, at least at this stage. The respective
command is similar to those to be used with the other types of input files, eg

ggraf --c3to4 qgraf.dat qgraf.in -percent
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41.4 Addressing rules 4 and 5, easily

Some of the recently introduced backward-incompatibilities — ie those that involve
deleted defaults of some kind — can be easily dealt with, even (or perhaps specially) in the
case of automatic set-ups. Moreover, the simplest solution is (in each case) independent of
the program’s version; for thoroughness only, they are detailed below.

If the default external momenta are (implicitly) being relied on, rule 4 can be satisfied
by simply making the corresponding (explicit) declarations in the in and out statements, eg

in = electron[pl], positron[p2] ;
out = photon[ql], photon[qg2] ;

whether needed or not (and this last bit applies to the next two cases as well). Moreover,
if the default integration momenta prefix is being used (implicitly), it is sufficient to always
include the following statement.

loop_momentum = k ;

In auto-mode, if the default filename for the control-file is being relied upon, rule 5 can
be satisfied by launching the program with a command-line argument equal to that default
(possibly using a shell alias, if convenient), eg

ggraf qgraf.dat

This should work even for qgraf-3.4, in which case that argument will not be read. The
point here is that there is a simple generic solution, which may simplify the update of related
software; of course, it is also possible to detect the version of the program being used and
address the various cases one by one. In API-mode, that filename has to be provided in the
initialization call.

41.5 Additional remarks

Ideally (if time allows), when no recent features are needed, and specially in the case
of automatic set-ups, it should be possible to run qgraf-4 using input files compatible with
older versions (say, qgraf-3.6). That would be achieved with at most three brief, additional,
preliminary runs which would convert each ‘oldish’ input file into a compatible file — namely,
by executing commands of the above described types. Then the diagram generation would
take place in one further run, employing the input files produced on-the-fly. Naturally, any
remaining constraints described in p. @ (eg rules 1 and 5) would have to be implemented by
the user.

The latest package includes a bash script file (ie g4in) that includes an implementation
of the above mentioned ideas. Before running that script it is necessary to edit the file and
adjust the definitions of the variables OMFILE, OSFILE and QGRAF to their environment. These
variables should denote (respectively) a temporary model-file, a temporary style-file, and the
executable for the program (path included). After that, the program may be launched (eg)
as

./q4in models/qed styles/my_style my_control-file

assuming that the files defined by OMFILE and OSFILE are the ones also declared in the
control-file; these two variables may remain fixed, of course, since the relevant ones are the
arguments of the above command.
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42. Obsolescent features

This section is likely to change in future versions of this guide, since it shall describe
some changes that ought to become mandatory with qgraf-5 (assuming that that version
will exist at some point). The aim of such announcements is to try to preclude abrupt
changes — by allowing a long period (years, possibly) for the implementation of the respective
specifications, ahead of their enforcement. Changes that are still not fully determined will be
included, provided they are planned. The current list follows.

(1) the diagram option topol will be deleted (new_topology can be used instead);

(2) the diagram option simple will be deleted (it can be replaced by a combination of two
others);

(3) statements with an ‘unbounded’ number of arguments (Bection20) will be deleted;
in their place there will be slightly more general statements depending on a single
function, which will not have to be non-negative (even now any iprop statement can
be replaced by a psum statement based on an appropriate p-function).
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43. Changelog for qgraf-4

4.0.0 (May 2024)

New features: the statement continuation mark and long(er) input lines (p. [d); the config
option delete (p.Ed); the output_dir, style_dir, model_dir and separator statements
(pp.E3 f); the options new_elinks, new_loops, new_partition, new_topology, noedge
and its dual (p.Bd); the style-keywords <loops1>, <loops2>, <local_symmetry_number>,
<nonlocal_symmetry_number>, <field_sub> and its dual (p. B8 f); the scope of the prologue
and epilogue sections has been extended (p. BR); the -no_extra_chars command-line option
(p. B3); a preliminary version of the file conversion tool (p. [IA).

Previously unannounced features: option norbridge and (duplicated) options nosbridge,
nobridge, as well as their duals (pp. B&-83), all of which seem to have been already available
with ggraf-3.3; the ability to use commutation numbers (instead of signs) in propagator
statements (p. B3), which appears to have been introduced with qgraf-3.6.0.

Other changes: some backward-incompatibilities were introduced (p.H, rules 1-3), oth-
ers announced (p.H, rules 8-9); the options and the loop_momentum statements are now
optional;?! the display-output may include the numbers of propagator-type and of vertex-
type sectors of the input submodel, and the diagram count for each loop order (pp. @3 f);
not for the first time, a few parameters were increased.

4.0.1 (May 2024)
Bug fix: a problem with function values.

An additional warning about Fortran module files was added to this guide (p. B).

4.0.2 (June 2024)
New features: the <index_offset> style-keyword (p. BR).
Bug fix: re-activates option topol.

Other changes: Occasionally, a minor speed-up may be observed. The file conversion tool
was improved a bit (p.[dd). A tentative interface specification was added to the respective
version of this guide (and was later replaced by the ‘definitive’ specification).

4.0.3 (June 2024)

Bug fix: a problem with vsum that may occur in the presence of duplicate vertices.

4.0.4 (July 2024)

New features: the ability to exclude a fixed external momentum term from some expres-
sions for the diagram’s momenta (p.Ed); the zero_momentum statement (p.BR); the style-
keywords <momentum_loop>, <momentum_term> and <dual-momentum_term> (on which the
momentum-loop construct is based, p. B0), and also <zero_momentum> (p. B3).

Bug fixes: a problem with the internal momenta (which were not always computed), and
additional problems with <full_time>, <raw_time> and <index_offset>.

21 The change has essentially been reversed for the loop_momentum statement (with
qgraf-4.0.5).
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4.0.5 (September 2024)

New features: config options flush and no_ntnls (p. E3); the count_to statement (p.ED);
the style-keywords <loop_momentum> and <diagram_counter> (p.Ed); an implementation
of the ‘definitive’ API (pp. B8 ff).

Bug fixes: some non-decomposable models were deemed decomposable; the <command_data>
style-keyword would output (the) wrong statements in multi-output configurations; a problem
involving the config option noinfo, which could cut the diagram generation short, apart from
not blocking part of the display-output; reverts the redefinition of <diagram_index> in the
epilogue.

Other changes: additional backward-incompatibilities were either introduced (p. @, rules 4-5)
or announced (p. B, rules 6-7); the source code now includes directives, and some preprocess-
ing options are necessary for compiling qgraf-4 (p. B); the rule for the implicit display-mode
has been modified (p. EQ); the file conversion tool has been improved a bit further (p. [I3).



