
1

QGRAF 3.6.7

P. Nogueira

CeFEMA, Instituto Superior Técnico
Universidade de Lisboa (ULisboa)

Lisbon, Portugal

Abstract

This document1 is an addendum to the guide for qgraf-3.0, and describes what has
changed since that version was released. To find out what is new in qgraf-3.6 please see
the Changelog (last section).

The file qgraf-3.0.pdf is still the primary documentation source. The extended dis-
cussion on the diagram sign computed by the program, previously available as a separate file,
is now part of this document (Section 23).

1 This version is part of the qgraf-3.6.7 pack (December 2023);
a unified documentation should become available with qgraf-4.0.0.

2

Contents

0. Preliminaries 3

1. The config statement 4

2. The messages statement 7

3. Multiple output (and style) statements 8

4. The loops statement (extended form) 9

5. The index_offset statement 10

6. The partition statement 11

7. The psum and vsum statements 12

8. The elink statement 14

9. The plink statement 16

10. Option bipart 17

11. Option cycli 18

12. Options nodiloop, noparallel, noselfloop 20

13. Option onevi 21

14. Option onshellx 22

15. The keywords <full_time> and <raw_time> 23

16. The keywords <new_loops>, <new_partition>,

<new_topology>, and <new_elinks> 24

17. Duplicate vertices 25

18. An extended language for describing models 26

19. Command-line arguments 31

20. Additional changes 32

21. An example of a modern control-file 34

22. An example of a modern model-file 35

23. The diagram sign (extended version) 37

24. Models with explicit propagator mixing 42

25. Compiling 44

26. Automatic downloads, licensing 46

27. Changelog for qgraf-3 48

3

0. Preliminaries

The main feature introduced in qgraf-3.6 consists in a set of new statements that
often allow a more compact description of the input model. This development was intended
for qgraf-4.0 but a couple of related requests/suggestions ‘by’ Matchmakereft and FeynCalc
accelerated its implementation. The ability to generate diagrams for more than one cycle rank
(ie ‘number of loops’, real or apparent) in the same run is a relatively minor yet convenient
feature which was probably long overdue. Other recently introduced features are mentioned
in the Changelog.

In the last five years or so, the number of lines of Fortran code has grown steadily
with each new (non-patch) version, the latest count exceeding 15 800 lines. By comparison,
qgraf-1.0 had just slightly over 3 300 lines, and even qgraf-3.1.4 (the final version from
the first development ‘era’), had less than 8 900 lines. Obviously, these numbers do not tell
the full story — not every line of code survives from one version to the next.

Some of the developments began with suggestions, requests, or comments from a num-
ber of people. Concerning the more recent versions (ie qgraf-3.1.5 and later), Lance Dixon
suggested what became the diagram option onshellx, and Vladyslav Shtabovenko requested
allowing more than one output-file, as well as allowing the control-file name to be specified
as a command-line argument. Regarding running-time optimizations, John Gracey and V.
Shtabovenko suggested improving the efficiency of (respectively) the graph generation for
‘large’ orders of perturbation theory, and diagram filters such as vsum. The first suggestion
to extend the loops statement is likely due to Jos Vermaseren sometime in the nineties!

Although compiling Qgraf is (almost) as easy as before, there is now a short section
about that (Section 25). Section 26 discusses automatic downloads.

In what follows, ‘screen’ (or ‘terminal’) means standard output , redefined or not, and
‘to display’ means to send to the standard output — computer monitor or otherwise. By
default, the control-file is the file qgraf.dat in the working directory (although it is now
possible to specify a different filename as a command-line argument).

4

1. The config statement

The config statement allows the specification of diagram unrelated options. If present,
it must be the first statement in the control-file.

1.1 The screen-modes

Given the current number of possible warning messages, it may be convenient to have
some control over the information displayed. Three distinct screen-modes , defined by the
keywords

noinfo

info

verbose

have been created for that purpose, and may be described as follows:

◦ noinfo: nothing should be displayed unless an error condition is detected;

◦ info: the program’s name and version numbers, the input statements from the control-
file, and the number of generated diagrams (per vertex-degree partition, and also the
total number) are displayed in that order; if the diagram generation finishes but there
were suppressed warning messages (which would have been shown in verbose mode),
a warning sign is added to the line showing the total number of diagrams, eg

total = 12343 connected diagrams (w!)

◦ verbose: in addition to the information displayed in info mode, the program displays
every ‘alert’ it can, as well as a summary of the model consisting of various numbers
of propagators and vertices; as it should be clear, this mode may help fixing defective
input files.

The screen-mode can be set by including one of those keywords in the config statement, eg

config = info ;

If the screen-mode is not set in the control-file then it is set implicitly:

◦ if an output-file is to be created, the screen-mode is set to info;

◦ else, the screen-mode is set to verbose.

If a run-time error is detected, the corresponding error message is displayed and then the
program stops, irrespective of the screen-mode.

1.2 Improving the write performance

If the operating system is one of those for which a newline consists of a line feed (LF)
control character (ASCII character 10), there is an experimental feature that should speed
up the write operation and which is enabled by the keyword lf, eg

config = lf ;

This should yield a small to moderate (overall) performance increase, provided the output-

5

file is large enough. Compatible operating systems are listed in Wikipedia’s Newline2 page,
Section Representation, and include Linux/GNU based systems. One may always run the
program with and without that option (a single test case might be sufficient) and check if
the output-files are identical.

1.3 Other configuration options

The keyword noblanks instructs the program to discard ‘blanks’ (ie each and every
space character) in the filenames read from the control-file. This means (eg) that the state-
ment

output = ’ ’ ;

becomes equivalent to

output = ;

irrespective of the operating system.

The keyword nolist disables creating the output-file(s) even if one or more filenames
are declared, eg

config = info, noblanks, nolist ;

output = ’dlist’ ;

style = ’f0.sty’ ;

· · ·

1.4 A missing option

When the number of diagrams is ‘big’ (larger than 105, say), the output-file will also
be quite large, obviously, and it might be desirable to split it into several files of a more
manageable size if (eg) the diagram processing software can handle them more efficiently
than it would handle a single large file. Although the program does not provide a way to
perform this kind of operation, that may not be a real problem as there exist tools which,
with little effort, can be used for the job. The remaining of this section describes a possible
method (for Linux/GNU operating systems).

The following lines

#␣<diagram_index>xyx

<epilogue>

show an excerpt of a conceptual style-file: they represent the last line of the diagram section
(an extra, artificial line introduced for the present purpose) and the line which declares the
epilogue section. Let us assume that the string xyx does not normally appear in the output-
file, ie that it is generated only when that extra line is added; if that is not the case then some
other string may have to be used. Now we will rely on the operating system and execute the
line command

csplit --prefix=’xx’ --digits=3 dlist ’/0000xyx/’ ’{*}’

This splits output-file dlist into smaller files (the pieces), containing the description of 104

2 https://en.wikipedia.org/w/index.php?title=Newline&oldid=863813417

6

diagrams each (except for the last piece, which could have a smaller number), as the pattern
0000xyx appears every time the diagram index is a multiple of 10000. In this example the
pieces will be named xx000, xx001, xx002, and so on; the prefix xx and the length of the
suffix (ie the number of digits) may be specified as arguments of that command. To keep the
number of files within reasonable bounds, the number of diagrams per piece should typically
be larger than 1% of the total number of diagrams (hence having 104 diagrams per piece
might be acceptable if the total number of diagrams does not exceed one million, say).

That process may be iterated without having a very large number of files at any given
time. For example, if the output-file contains 107 diagrams and one wishes to create pieces
with 103 diagrams each, one may first create only 100 pieces with 105 diagrams each and
then split each piece into 100 sub-pieces, but not simultaneously — ie a piece is split, its
sub-pieces processed and then deleted, then another piece is split, and so on.

If the extra lines are processed as commentary by the program that reads them, nothing
else needs to be done; if not, they can be eliminated with the help of a simple bash script, eg

TMPF="xx0tmp"

\rm -f $TMPF

for xf in ‘\ls xx*‘ ; do

\grep -v xyx $xf > $TMPF

\mv -f $TMPF $xf

done

It is safer to do the whole procedure in a directory containing only the necessary files, of
course. The prefix should be chosen with care, as csplit overwrites existing files.

In the future, hopefully, a direct interface to the diagram amplitudes generated by
Qgraf should provide a reasonable solution to the problem of storing and/or processing the
program’s output in more diverse ways. Meanwhile, one may sometimes use the partition

statement to lessen the current difficulties.

7

2. The messages statement

The messages statement declares the name of a file to be created by the program for
saving warning and error messages. This statement is optional, independent of the screen-
modes, and aimed mainly at script based setups. It may appear only once, either immediately
below the config statement, eg

config = info ;

messages = ’msg.txt’ ;

output = ’dlist’ ;

style = ’f0.sty’ ;

· · ·
or, if the config statement is absent, as the first statement in the control-file.

Note, though, that messages issued before the messages-file has been opened will not
be stored in that file. Problems at that stage should occur only rarely, if at all, unless (i)
the control-file cannot be read or contains errors (ie the config or the messages statements
contain errors), or (ii) the messages-file already exists or cannot be opened. The file will
not be saved at the end of the run if it contains no messages; moreover, the symbol (w!)
mentioned in Section 1.1 will not be displayed if such a file has been created.

8

3. Multiple output (and style) statements

To generate multiple (up to four) output-files in the same run, style-files and output-files
should be paired (their names appearing alternately) eg

config = ;

style = ’f1.sty’ ;

output = ’out1’ ;

style = ’f2.sty’ ;

output = ’out2’ ;

· · ·
All of those files should be distinct. A valid style-file name is required for each pair, eg a
‘trivial pair’ such as

output = ’’ ;

style = ;

is not allowed (but it is possible to have zero pairs).

NB: for each output-file, the <command_loop> skips those iterations corresponding to output

and style statements that do not refer to that file.

9

4. The loops statement (extended form)

From the very start, the loops statement required users to specify exactly one value
(ie the number of loops , or cycle-rank) for the diagrams to be generated, eg

loops = 2 ;

It is now possible to instruct the program to generate in a single run all the diagrams for a
number of consecutive cycle-ranks, eg

loops = 1 to 4 ;

or even
loops = 4 thru 1 ;

These two statements are not fully equivalent, even though the keywords thru and to can be
exchanged with one another; the program starts with the first (ie leftmost) specified value,
and then progresses sequentially towards the second value by adding or subtracting 1 in each
iteration, as appropriate. The diagram constraints specified by other statements apply to
every loop order, obviously.

Usually, the diagram propagators do not contribute directly to the order of perturbation
theory (they contribute with a null weight, let us say), whilst a vertex of degree d, where
d ≥ 3, contributes with weight (d/2)−1 (which is positive). For example, at tree-level, in a
simple gauge theory, cubic vertices are proportional to the coupling constant g whilst quartic
vertices are proportional to g2 (and propagators do not depend on g). Actually, in what
follows, it may be more convenient to consider the expansion of the amplitude in g (or in
some other appropriate factor) rather than on the number of loops, so that the weights
become integer (in which case they can be accepted by vsum and psum statements).

Nonetheless, there are cases for which the number of loops given as input does not
represent the order of perturbation theory — because the vertices and/or propagators may
represent some higher order corrections instead of the tree-level interactions and propagators
— and which require dealing with propagators and/or vertices with unusual weights. Often,
such cases can be addressed by performing multiple runs (for different values of the cycle-
rank), with specially adjusted parameters for each run — including the numerical arguments
for the vsum and/or psum statements. Then, the extended loops statement might be able to
reduce the number of required runs.

However, there is a marked difference between dealing with usual and unusual weights:
with the usual (implicit) weights, a single run with an extended loops statement provides
the required diagrams for all of the corresponding orders of perturbation theory; in the other
case, and assuming that the order of perturbation theory can be defined in terms of the
number of loops and a single (explicit) weight, each run provides the required diagrams for
just one such order.

NB: The output sent to the screen has been modified, so that the cycle-rank is displayed in
the diagram generation phase too. The current potential of this extended statement is still a
bit limited, but that should change whenever some other improvements are introduced.

10

5. The index offset statement

When combining the output-files of two or more runs into a single file, it may be useful
not to have the first diagram of every output-file being assigned the diagram index 1. The
(optional) index_offset statement instructs the program to add a non-negative integer to
the default diagram index, eg

· · ·
options = ;

index_offset = 1071 ;

This offset is disabled in the epilogue section, where the (style) keyword <diagram_index> is
still replaced by the number of diagrams listed in the output-file. This statement may appear
after the options statement, but before any true or false statement.

The following example shows a possible application of the index_offset statement.
Let us suppose that the diagram selection criteria involve not a conjunction like

true = A ;

true = B ;

where A and B represent valid expressions, but some other logical connective of two or more
conditions, eg

(true = A) ∨ (true = B).

Although this type of statement is not accepted, there is a way out: this inclusive disjunction
can be split into three mutually exclusive cases, namely (case 1)

true = A ;

false = B ;

then (case 2)

false = A ;

true = B ;

and finally (case 3)

true = A ;

true = B ;

which may be run separately. Similarly, the exclusive disjunction can be divided into two
non-overlapping cases, the equivalence A ⇔ B into two cases also, and so on.

11

6. The partition statement

Unless the noinfo option is enabled, the output displayed includes the (vertex) degree
partitions that are simultaneously compatible with all of the following inputs: the model,
the physical process, and the order of perturbation theory. In general, this compatibility is
not sufficient to ensure the existence of corresponding diagrams in the input model — it just
means that the vertex degrees and their respective multiplicities satisfy a simple arithmetical
relation which ensures that there is at least one topology with that degree partition (which
in some models with the same set of vertex degrees will be the topology of some diagram).

The partition statement restricts the diagram generation to some subsets of those
partitions. It may appear at most once, after the options statement and before any true or
false statement. For example, if a model has cubic and quartic vertices only, the statement

partition = 3^2 4^1 ;

requires the diagrams to have precisely two vertices of degree 3 and one vertex of degree 4.
Let us now suppose that the set of vertex degrees of the input model is {3, 4, 5, 6}. Then,
since any missing term is assumed to be indeterminate, the above statement may select more
than one partition; in fact, it selects every compatible partition of the form 32 41 5a 6b, if
any, where a and b are ‘free’ (ie not constrained by that statement). Similarly, the statement

partition = 3^0 ;

selects those partitions that exclude cubic vertices. To pick a single partition it may be neces-
sary to specify nearly all (or even all) of the vertex degrees and their multiplicities. A ‘term’
n^k should not appear in the partition statement unless the input model contains some
interaction vertex of degree n. In the above examples each term sets the exact multiplicity
k of some degree n, but it is also possible to impose inequalities instead of equalities. For
example, the statement

partition = 3^(1+) 4^1 5^(1-) ;

demands at least one cubic vertex, exactly one quartic vertex, and at most one quintic vertex.
On the other hand, the constraint defined by the statement

partition = 3^(0+) ;

is trivial.

When the control-file includes a partition statement the numbers of diagrams for
excluded partitions are not displayed (nor computed, of course), although the partitions
themselves are displayed. The following example matches the first of the above statements.

- 4^2

3^2 4^1 10

3^4 -

total = 10 connected diagrams

12

7. The psum and vsum statements

The ability to define functions (ie parameters associated to fields, propagators, and
vertices) in the model-file implicitly suggests new diagram selection criteria. It is now possible
to impose some numerical constraints that depend on integer functions. The existence of
a mechanism to (eg) restrict the powers of coupling constants seems particularly relevant,
specially in models with two or more independent coupling constants; in fact, partial radiative
corrections based on subsets of diagrams defined by such conditions have been routinely
considered in the particle physics literature. In practice the new filters consist of optional
statements that may appear in the control-file (see file qgraf-3.0.pdf, Section 4.3).

7.1 The vsum statement

Let g_power be a v-function mapping each vertex to an integer equal to the power of
a certain coupling constant g in the Feynman rule for that vertex. To restrict the power of g
in the diagram amplitude, one may write eg

true = vsum[g_power, 4, 4] ;

In general, the first argument of vsum is a v-function and the other two are similar to the
corresponding arguments of iprop, bridge, ..., although they can be negative. Since the
function values have to be integer, definitions like

g_power = ’1/2’

g_power = ’ +2’

will not be accepted. In principle, it is possible to convert a constraint involving rationals
into another constraint depending on integers only; in practice, such integers should not be
too large (there should be no problem if their absolute values do not exceed 104, say).

Obviously, this filter may be used for purposes other than selecting the powers of
coupling constants. For example, let one be a v-function that maps every vertex to ’1’; if
one is used as the first argument of a vsum statement then the number of vertices in each
diagram will be restricted.

Here is another example: let V1 be a subset of the interaction vertices, and binary a
v-function that maps vertices in V1 to ’1’ and vertices not in V1 to ’0’. Then, the statement

false = vsum[binary, 0, 0];

selects diagrams containing at least one vertex in V1.

7.2 The psum statement

There is an analogous statement for propagators. For instance,

true = psum[pweight, -1, 1] ;

restricts the sum of the values of the p-function pweight taken over the diagram propagators.

There is a nontrivial difference between the psum and vsum statements, apart from the
fact that they operate on different types of functions. As Qgraf does not produce tree-level
propagators any generated diagram has at least one vertex; therefore any implicit summation

13

for vsum includes at least one term. However, there exist tree-level diagrams without prop-
agators — namely, the diagrams representing the tree-level vertices of the model, which we
may call stars . There are also tree-level processes with diagrams of ‘mixed-type’, ie some of
the diagrams (non-stars) have one or more propagators whilst the remaining diagrams (the
stars) have none.

Conventionally, Qgraf assigns a null term for the stars, but the user should check
whether that is indeed the desired action and, if not, make the necessary adjustments. It
might be necessary to generate the stars in a different run (if they are required, but are
excluded by some psum statement which must be present to deal with the non-stars), or
else the stars may have to be excluded (eg) by some additional statement (if stars are to be
discarded, but are allowed by the current statements).

7.3 Additional comments

Asymptotically, ie for a large number of vertices (vsum) or propagators (psum), these
filters do not (moreover,3 cannot) have efficient implementations, if they are general enough.
For some particular cases, though, more efficient algorithms do exist — nonetheless, they have
not been implemented yet (there has been an improvement with qgraf-3.5, but a relatively
small one).

Update: qgraf-3.6 brings additional efficiency gains for both vsum and psum; apart
from that, in some cases this efficiency issue can be surmounted by defining submodels .

3 At least assuming the widely held belief that the algorithmic complexity classes P and
NP do not coincide (ie P ̸= NP).

14

8. The elink statement

The elink statement provides a way to restrict the configuration of external lines —
ie diagrams can be selected or rejected depending on whether or not some external fields
are attached to the same vertex or set of vertices. Some constraints of this type, to be
dubbed (external) linking conditions, may be simulated by constructing an extended model
— defining new external fields and new vertices — but that approach can be exacting.

D1

-2

-4-1

-3

D2

-2

-4-1

-3

D3

-2

-4-1

-3

ψ1

ψ2

φ2

φ1

Fig. 1. Illustrating the elink statement.

Let us take a look at some examples, assuming the generic process

ψ1 ψ2 → ϕ1 ϕ2.

The field-indices of those external fields are, from left to right, equal to −1, −3, −2, −4. The
statement

true = elink[-1, -3, incl, 1, 1];

selects those diagrams in which ψ1 and ψ2 link to the same vertex, inclusively —meaning that
the other external fields can be attached to any vertex, as far as this statement is concerned.
For example (Fig. 1), diagrams like D1 and D3 are validated, and D2 rejected. This other
statement

true = elink[-1, -3, excl, 1, 2] ;

selects those diagrams in which ψ1 and ψ2 link (in total) to either one or two vertices, this
time exclusively — ie ψ1 and ψ2 may or may not be attached to the same vertex, but in
either case the other external fields should link to other vertices. This condition rejects D2

and D3, for instance.

A generic elink statement includes three types of arguments. Each argument of the
first type should be the field-index of an external field, and therefore a negative integer (no
repetitions are allowed). Then comes a non-numerical argument, either excl or incl, to
specify whether the linking condition is exclusive or inclusive. The third set of arguments
consists of two positive integers (a and b, say) which specify the range for the number of
vertices involved in the linking condition. If k denotes the number of arguments of the first
type, and n the number of legs, then the inequalities

1 ≤ a ≤ b ≤ k ≤ n , n ≥ 2 ,

should hold, otherwise an error will occur. Here are some more examples: the statement

false = elink[-1, excl, 1, 1];

requires ψ1 to link up with some other external field(s), whilst

15

false = elink[-1, -2, incl, 1, 1];

requires ψ1 not to link up with ϕ1 (a condition which diagram D3 fails to satisfy). Some
elink statements are trivial, eg (still in the case of the above mentioned process)

true = elink[-1, incl, 1, 1];

true = elink[-1, -3, incl, 1, 2];

true = elink[-1, -2, -3, -4, excl, 1, 4];

Their negation rejects every diagram, of course.

16

9. The plink statement

This statement addresses the case where the selection criterion consists in either the
absence or existence of a bridge-type propagator with a specific nonzero momentum. The
ability to either disallow or require the existence of those propagators may help select eg
diagrams whose amplitude has some type of resonance, or tree diagrams contributing to the
s-, t- and u-channels; in the case of non-tree diagrams it also provides a way to have some
external fields ‘on-shell’ and others ‘off-shell’ (like a selective onshell option, see below).

If a connected diagram has a regular bridge then deleting that edge will split the set
of external fields into two non-empty subsets X1 and X2, each one containing the external
fields belonging to one of the two sub-diagrams obtained. If pi and qj denote the incoming
and outgoing momenta, respectively, then the momentum P flowing through that edge can
be written as

P =
∑
i

ai pi −
∑
j

bj qj ,

with ai, bj ∈ {0, 1}; here, the global sign will be ignored (in any case, the relative signs of the
coefficients in the above relation are fixed). As the external momenta satisfy the momentum
conservation relation

∑
pi =

∑
qj , it should be clear that P can be expressed as a linear

combination of the external momenta in two different ways.

D1

-2

-4-1

-3

D2

-2

-4-1

-3

D3

-2

-6

-1

-3

p1

p2

q2

q1

p1

p2

q2

q1

-4

b

Fig. 3. Illustrating the plink statement.

The arguments of the plink statement should be the field-indices of the external fields
in either X1 or X2; the number of arguments cannot be equal to zero, nor equal to the number
of legs, as P would then be null. Let us take a look at some examples: the statement

true = plink[-1, -3];

selects those diagrams that have at least one propagator with momentum p1+p2, like diagram
D1 (Fig. 3); diagram D2, which has a propagator with momentum p1−q2 (or p2−q1), would
be selected by either of the statements

true = plink[-1, -4];

true = plink[-3, -2];

The plink statement may also be used to set only part of the external fields ‘on-shell’ .
For instance,

false = plink[-2];

rejects any diagram with a bridge separating external field −2 from every other external field,
such as diagram D3 (which has one such bridge, labelled with the letter b).

17

10. Option bipart

The option bipart selects those diagrams whose topology is a bipartite graph — ie a
graph G whose node-set can be partitioned into two subsets A and B in such a way that
every edge (if any exists) joins a node u ∈ A to a node v ∈ B. That is the same as requiring
that G has no circuit (or loop) of odd length; in particular, G must have no self-loops. Every
tree is bipartite.

The dual option is nonbipart.

18

11. Option cycli

Given the usual types of Feynman rules in momentum space, the evaluation of some
diagrams involves a factorizable integration, ie decomposable into a product of two or more
independent integrations (for 2-loop and higher order diagrams, obviously). Even if the
complete integrand does not have such a property it might be possible to decompose it into
a sum of factorizable expressions, if the diagram topology is right.

A circuit (or simple cycle, which physicists may call a loop) of a graph G is a non-empty
set of edges that, together with their endnodes, define a connected subgraph of G in which
every node has degree 2. It follows from this definition that a circuit cannot be decomposed
into two or more circuits. Circuits of length 1 and 2 are allowed: the former case corresponds
to self-loops, the latter to pairs of parallel edges (self-loops excluded) as in diagrams D2 and
D3 (Fig. 4). Recall that an edge of a graph is either a bridge (if it does not belong to any
circuit) or a nonbridge.

Definition: a cycle-block (or cycle-component) of a graph G is a non-empty set S of
nonbridges such that

◦ for every circuit C, either C ⊆ S or C ∩ S = ∅;
◦ given any two edges e1, e2 ∈ S, there is a circuit containing e1 and e2.

There is a simple interpretation of cycle-blocks in terms of sub-diagrams. Let D be an
l-loop, non-tree diagram, and Pc the set of its nonbridge propagators; also, let k1, k2 . . . kl
be the independent integration momenta, and ignore the external momenta (eg set them to
zero). Then each cycle-block is a minimal,4 non-empty subset S of Pc such that the two sets of
momenta flowing through the propagators in S and S̄ = Pc \S, respectively, are independent
of each other (ie can be parametrized independently); the case where S = Pc and S̄ is empty
is implicitly allowed, as there may exist a single cycle-component. For example, any self-loop
defines a cycle-block.

The diagrams selected by option cycli (which stands for cycle-irreducible) are those
that have a non-factorizable cycle space, ie that have at most one cycle-block; the dual option
is cyclr. Since cycli ignores bridge-type propagators, it is the following combination

options = cycli, onepi ;

which selects sets of diagrams even more ‘primitive’ than those selected by option onepi only.
Fig. 4 shows a few examples. Diagram D1 has two self-loops and thus two cycle-blocks (hence
it will be rejected by cycli); denoting the momenta of propagators 1 and 2 (as marked) by
k1 and k2, one may readily see that (a) those two momenta are independent, and (b) there
is no propagator whose momentum has to be expressed as a linear combination in which the
coefficients of k1 and k2 are both nonzero.

Diagram D2 has also two cycle-components, defined by the subsets of propagators
{1, 2, 3} and {4, 5, 6, 7, 8}. Excluding the contributions of the external momenta, here it is
possible to express eg k3 in terms of (k1, k2), and (k5, k6, k8) in terms of (k4, k7). Since one
may do so for each of the above (disjoint) subsets, D2 will be rejected too. That type of
partitioning is not possible for diagram D3, which will be validated; D4 will also be validated

4 ie non-decomposable into two or more sets of the same kind

19

by cycli, just like any tree or 1-loop diagram.

2

1

6

8

7

5

4

3

2

1

D3 D4

D1 D2

Fig. 4. Illustrating option cycli.

20

12. Options nodiloop, noparallel, noselfloop

There are three pairs of options to deal with circuits of length one (self-loops) and two
(di-loops):

◦ noselfloop excludes (diagrams with) self-loops.

◦ nodiloop excludes di-loops (ie any two distinct vertices may be joined by at most one
propagator).

◦ noparallel excludes parallel propagators (ie no di-loops, and each vertex can have at
most one self-loop).

Their duals are (respectively) selfloop, diloop, and parallel. The equivalence

simple ↔ noselfloop, nodiloop

should be clear.

21

13. Option onevi

Option onevi selects those diagrams whose topology has no articulation point, or cut
vertex (in the graph theoretical lingo). This means those diagrams that remain connected
upon the removal of any single vertex (interaction vertex, that is). By definition, the empty
graph is connected; consequently, diagrams discarded by option onevi must have at least
three vertices. The dual option is onevr — onevi means 1-vertex irreducible, and onevr

means 1-vertex reducible.

In the case of 1-particle irreducible diagrams there is some overlap between options
cycli and onevi, but they do not coincide; moreover, if both bridges and self-loops are
excluded then they become identical.

T2T1 T3

Fig. 5. Illustrating option onevi.

In Fig. 5, T1 and T2 are 1-vertex reducible: deleting any vertex that does not connect
to an external line will generate two disjoint components. Topology T3 is 1-vertex irreducible
as it has too few vertices to be reducible. The previous figures provide useful examples too:
the 1-vertex reducible topologies are T3 in Fig. 3, and T2 in Fig. 4.

There is a class of topologies that are both 1-particle reducible and 1-vertex irreducible,
for which T3 (Fig. 5) may be seen as a kind of prototype: they have exactly two nodes (u
and v, say), joined by a single edge; u and v may have multiple self-loops (depending on the
model); the external lines connect to u and/or v, obviously.

A minor technical point: usually (as per classical graph theory) the deletion of a vertex
implies also the deletion of the edges incident to that vertex. A slightly different option,
which seems more natural in a QFT context, consists in deleting a vertex and all its incident
half-edges, after having first cut each incident edge into two half-edges. Obviously, this does
not change the above definition of 1-vertex (ir)reducibility.

22

14. Option onshellx

The option onshell discards diagrams that have a propagator whose splitting generates
two separate diagrams, provided one of those is a 2-point diagram. In that case there will
be a bridge-type propagator whose momentum equals the momentum on one of the external
lines (as in diagrams D2 and D6 (Fig. 6), where the bridge is labelled with the letter b and
the corresponding external line with the letter e).

Occasionally, a more extensive elimination may be useful. The option onshellx also
rejects diagrams for which the above mentioned bridge is absent, as if it had contracted to a
single point and its two end-vertices had fused (compare eg D1 and D2). Diagrams rejected
by onshellx, but not by onshell, will have at least one vertex of degree d≥ 4. Like most of
the other options, onshellx has a ‘topological’ character: only the diagram topology matters,
not the actual fields.

Diagram D1 will be rejected by option onshellx (but not by onshell), whether or not
there exists (in the same model) a similar diagram D2 with the same fields except for the
bridge b. Diagram D2 will be discarded by either option, obviously.

D3 D4

D5 D6

D1

b

D2

b
e

e

Fig. 6. Illustrating option onshellx.

Diagram D3 will not be rejected by onshellx, unlike D5: although D3 may be obtained
by contracting the bridge in D4, that bridge does not isolate a single leg (and no suitable
diagram exists), whilst D5 can be obtained from D6, which has a suitable form. If options
onshellx and nosnail are used simultaneously then all six diagrams will be rejected.

The diagrams selected by onshell and rejected by onshellx follow from the combina-
tion

options = offshellx, onshell ;

and this allows one to do a basic cross-check in the case where those diagrams are thought
to evaluate to zero. Regarding cross-checks that have been performed so far, the numbers
obtained for the combination

options = offshellx, nosnail ;

agree with several numbers from L. Dixon (private communication) and S. Badger for 1-loop
and 2-loop diagrams, respectively. Additionally, a second algorithm has been developed for
onshellx, and an agreement with the original algorithm was found.

23

15. The keywords <full_time> and <raw_time>

The keyword <full_time> may appear in the prologue and epilogue sections of the
style-file. The output generated by this keyword should be the ‘full time’ (ie date, time,
and time zone, in ASCII), as provided by the operating system — which means that the
correctness of this output depends on having an appropriately configured environment. That
output should look like this:

2022/09/16 10:15:15.389 +0100

The date format uses the sequence year/month/day, as it is the Fortran standard; the slashes
and the colon signs are added by Qgraf. Alternatively, the keyword <raw_time> produces
a similar output without added characters, eg

20220916 101515.389 +0100

The obvious usefulness of these keywords consists in being able to register the creation time
in the file itself — the time set by the operating system can be changed involuntarily if one
is not careful enough (eg when copying the file). When there are no issues, inserting any of
those keywords in both of the above mentioned sections may give us a very good estimate
of the real time taken by the execution of the program (namely, by computing the elapsed
time from the respective outputs). That elapsed time might not include the (total) amount
of time taken by the operating system in saving the output-file in the computer disk, as that
file is usually created in the computer RAM and often not immediately copied to the disk.

24

16. The keywords <new_loops>, <new_partition>, <new_topology>,
and <new_elinks>

There are three new keywords for the diagram section of the style-file. They are not
‘normal’ data keywords, though, as they do not depend only on the current diagram.

The output generated by <new_topology> specifies whether or not the topology of the
current diagram differs from the topology of the preceding (output) diagram; a 1 is produced
when they differ, else a 0 is produced (and for the first diagram, a 1 is produced). Note
that the ‘topology’ of a diagram is independent of the arrangement of the external fields, but
depends on the number and arrangement of the external lines (ie with fields omitted).

The keyword <new_elinks> produces a 1 in the following cases (and a 0 otherwise):

◦ when the keyword <new_topology> produces (or would produce, if present) a 1,

◦ when the keyword <new_topology> produces (or would produce) a 0, and the con-
figuration of the external fields in the current diagram differs from the corresponding
configuration in the preceding diagram.

As an example of a potential application, let us point out that <new_topology> might
be employed to speed up the diagram topology identification. On the other hand, if the model
has a single field (and if that field is neutral) then <new_elinks> becomes irrelevant, as it
always produces a 1. Also, the usefulness of these keywords might be reduced to some extent,
or even completely, if (say) the output diagrams were divided among multiple output-files,
or if those diagrams were sorted in a different order.

In the same vein, the keyword <new_partition> produces a 1 not only for the first
diagram, but also for any subsequent diagram for which the vertex degree partition differs
from that of the preceding diagram (otherwise, it produces a 0).

Finally, the keyword <new_loops> may be useful when the loops statement requests
diagrams for more than one cycle-rank (ie number of loops). This keyword produces a 1 for
each diagram whose cycle-rank differs from the cycle-rank of the previous output diagram
(and also for the very first diagram), else it produces a 0.

25

17. Duplicate vertices

A model has duplicate vertices if its description contains at least two vertex declarations
with the exact same fields and multiplicities. Each vertex may in fact have several duplicates,
and although the corresponding declarations may be identical, that needs not be the case:
the values of the v-functions may differ, as well as the field ordering in each vertex.

Duplicate vertices have been tolerated for some time but typically Qgraf generated
more diagrams than necessary (with the appropriate ‘symmetry factors’, nevertheless). This
has been improved with qgraf-3.3 — further symmetries are taken into account in this case,
and the number of diagrams may now be smaller.

26

18. An extended language for describing models

The input-model description has been overhauled, and now one may define sectors ,
submodels , and default values (or simply defaults) for functions. What may be achieved with
the new statements includes (i) a more compact description of ‘complex’ models (ie models
with many propagators and/or vertices, and for which one or more functions have been
defined), and (ii) a combined description of certain models and their extensions in a single
file. Creating a model-file with submodels can be a bit more time-consuming than creating
separate files but, should some changes be required later on (eg adding new functions, or
fixing some definition), it would then be possible to update all of those submodels by editing
a single file.

Model-files accepted by (eg) qgraf-3.4 continue to be valid, but if a model file includes
any of the new statements described in this section then the new specification applies in toto
(which implies that constants and functions will have to be declared explicitly).

A model-file is divided into six zones (ie implicit sections), but in some cases some of
them may be empty. An illustrative ‘toy’ example of a modern model-file — that may be
useful in figuring out the sequence in which the different types of statements should appear
— can be found in Section 22.

18.1 Sectors

A sector is a ‘piece’ of the model-file delimited by two statements of the form

sector[sector1]

· · ·
end[sector1]

Here sector1 is the name of the sector, which must be an identifier. Not every type of
statement may appear in a sector block — in fact, there are only two types of sectors, and
each type contains at most two (other) types of statements. A propagator-type sector contains
one or more propagator statements, possibly preceded by other statements (to be discussed
later) that define default values for some f-functions and/or p-functions, eg

sector[sector1]

[; pf1= -1]

[phi, phi, + ; pf2= ’A’]

end[sector1]

In a similar fashion, a vertex-type sector may contain statements that define a default value
for some v-function, and must contain one or more vertex statements, eg

sector[sector4]

[; vf1= 0]

[phi, phi, phi]

end[sector4]

Propagator and vertex statements need not be part of some sector block. Nevertheless,
propagator statements should still precede vertex statements, and thus propagator-type

27

sectors should precede vertex-type sectors. The sectors are declared in zone 1, and there
must be a single statement for each type of sector, eg

[p_sectors :: sector1, sector2]

[v_sectors :: sector3, sector4, sector5]

18.2 Submodels

The existence of sectors makes it possible to define submodels by instructing the pro-
gram to treat some sectors as an integral part of the input model and other sectors as alien;
the propagator and vertex statements that are not part of any sector are always part of the
definition of every submodel.

The submodels should be declared at the very top of the model-file (zone 1), before
being defined one by one in zone 4. For example, the statement

[submodels :: subm1, subm2]

declares two submodels, and the statement block

submodel[subm1]

[include :: sector1, sector3]

end[subm1]

defines submodel subm1 by listing the sectors that it comprises (their relative ordering in this
statement being immaterial). A submodel may also be defined by listing the sectors that are
not part of that submodel, eg

submodel[subm2]

[exclude :: sector5]

end[subm2]

For example, a submodel that comprises every sector may be defined either by listing all the
sectors in an include statement or by using a ‘void’ exclude statement, ie

[exclude ::]

Such a submodel has to be defined if the complete model-file describes a (sub-)model that
Qgraf should be able to use and if at least one other submodel is defined. Concerning the
control-file, one may either have the usual type of model statement if no submodel is defined
in the model-file, eg

model = ’qed’ ;

or else an extended form of that statement which also specifies the submodel to be selected
by the program (submodel qed1, in the next statement), eg

model = qed1 // ’qedx’ ;

18.3 Constants

For a model-file that does not define any submodel the constants are (well ...) really
constant. When the model-file defines two or more submodels it may be convenient to have
submodel-dependent ‘constants’ (for example, one may wish to define for each submodel a

28

distinct string representing the name of that submodel). The constants should be declared
in a single statement, in zone 2. The submodel-independent (or global) constants should be
defined in zone 2 as well, after (ie below) the declaration statement. This is illustrated in the
following example (note that only the first type of statement is new).

[constants :: c1, c2]

[c1= ’qcd’]

[c2= ’g’]

The submodel-dependent constants should be defined in every submodel block, in zone 4,
unless defaults are defined (this alternative method is described in section 18.5). The syntax
is as to be expected, for example,

submodel[subm1]

[include :: sector1, sector3]

[c1= ’qed3’]

end[subm1]

submodel[subm2]

[exclude :: sector5]

[c1= ’qed1’]

end[subm2]

The include (or exclude) statement should be the first statement in a submodel block.

18.4 Functions

Functions come in three types, and there is a distinct statement for declaring each type
(in zone 3). For example, the statements

[f_function :: ff1]

[p_function :: pf1]

[v_function :: vf1]

declare ff1, pf1, and vf1 as (respectively) a field-function, a propagator-function, and a
vertex-function. The integer qualifier should be added5 when declaring functions that may
be involved in some integer constraint (implemented in terms of statements like vsum, psum
...), eg

[integer v_functions :: vf2, vf3]

There can be at most two statements of this kind for each function type — one statement
for the generic functions (to be treated as strings of characters) and one other statement for
the integer functions, with no repeated identifiers between them.

18.5 Default values

If a function takes the same value many times (in a given model), it may be useful to
define one or more default value(s) for that function. Default values may be defined globally

5 This is not being enforced straight away, but it should be enforced in future versions.

29

and/or per sector with the sectorial values taking precedence over the global ones. For each
function, one may define at most one global default, and at most one default per sector.
Sectors need not be defined for this purpose if all defaults are global. Still, if any default
value is to be defined then every function and constant must be declared.

To define a global default for vertex function vf2 (say), one simply has to state eg

[;; vf2= 1]

in zone 3, after declaring that function. As a result vf2 no longer has to be defined for every
vertex — only those values that differ from the default (in this case, 1) have to be declared
explicitly, in the usual way. Additionally, if the model-file contains sectors then sectorial
defaults may be defined too, whether or not global defaults exist, eg

sector[sector3]

[; vf2 = 0]

· · ·
It then follows that vf2 will be equal to 0 for every vertex in sector sector3 unless that
default is overridden by explicit definitions in the vertex statements. Defaults for distinct
functions (and constants) should be defined in different statements. Having statements with
either a single or a double semicolon may serve as a reminder that the corresponding default
values can be overridden at one or two other stages, respectively.

Defining defaults for propagator-functions is similar, but for field-functions there are
more possibilities. For instance, the statement

[;; ff1= (0), (-1,1)]

defines a global default for ff1, both for neutral and for charged fields. Nevertheless, it is
possible to define partial defaults, eg

[;; ff1= (1)]

or
[; ff1= (0,1)]

since (say) not every model (or sector) has both types of fields.

The precedence rules within each sector are as follows: statements defining f-function
or p-function defaults should precede propagator statements; statements defining v-function
defaults should precede vertex statements. Thus, the last statement of any sector (excluding
the end statement that closes the sector block) must be either a propagator statement or a
vertex statement.

Furthermore, it is possible to define defaults for submodel-dependent constants, even
though that feature is probably not very useful. In any case, if one states

[; c1= ’qcd’]

in zone 2, after declaring c1 as a constant, then ’qcd’ becomes the global default for c1.
That default may be overridden in any submodel block, eg

submodel[subm1]

[include :: sector1, sector3]

[c1= ’qcdx’]

end[subm1]

30

18.6 Additional remarks

Defining submodels requires introducing sectors as well, obviously, but not conversely.
Let us dub a sector as active when it is part of the submodel specified in the control-file,
and as alien otherwise (when no submodel is defined then every sector is active). The active
sectors are those that the program will focus on, of course, and they are fully checked for
syntax and content, whilst the alien sectors are only partly checked. To properly debug a
model-file it is necessary to run the program for every submodel defined in that file.

Although it is easy to create rather cryptic model-files in this extended language, one
should try to steer clear of that path as much as possible. The proactive measures include
adding an adequate amount of commentary, avoiding cryptic identifiers, defining the sectors
carefully, and grouping together those propagator (or vertex) statements that are not part of
any sector.

NB: should you decide to update your ‘old’ model-files, please note that they may still be
used as input not only for some previous version of the program but also for Qgraf-r (until
it is updated, at least, which should happen in late 2024).

31

19. Command-line arguments

For qgraf-3.5.2 and later versions the command-line interface can be used to pass a
few basic instructions to the program. Executing either of the following commands

qgraf -version

qgraf --version

should result in Qgraf displaying its own name and version numbers (typically left-aligned
on the standard output and terminated by a newline), and then exiting at once. To give an
example, for qgraf-3.6.7 the output string should be

qgraf-3.6.7

For a normal run, it is possible to define the control-file name as a command-line
argument, eg

qgraf my_control-file.in

in which case the program will read the file my_control-file.in instead of the standard
one (qgraf.dat). Still, there are some restrictions6 on the filenames input in this way:

◦ each (ASCII) character should be either alphanumeric (ie a letter or a digit) or one
of three ‘special’ characters — namely, the underscore, the hyphen-minus , and the dot
(all of which appear in the above example);

◦ the first and the last characters must be alphanumeric;

◦ no two special characters should appear consecutively.

6 Some initial implementations may impose weaker restrictions, but these are the ‘official’ ones.

32

20. Additional changes

In addition to the features discussed in the previous sections, there are other differences
between qgraf-3.6 and qgraf-3.0, and the most relevant of those are described below.

There is a different presentation of the model partitions, which now includes some
additional types of propagators (this refers to the output displayed). Here is an example

propagators: (8) 2N+ 3C+ 1N- 2C-

which is to be interpreted according to the following rules:

◦ The signs ‘+’ and ‘-’ denote the propagator sign (ie, whether the propagators are defined
in terms of commuting or anti-commuting fields).

◦ The letter ‘N’ refers to ‘neutral’ propagators, ie those for which the particle is equal to
the anti-particle.

◦ The letter ‘C’ refers to ‘charged’ propagators, ie those for which the particle and the
anti-particle differ.

For instance, the propagators of Dirac fermions (and the propagators of some ghost fields
as well) contribute to the coefficient of C-, while the propagators of Majorana fermions
contribute to the coefficient of N-. Therefore, in the above example the model-file defines
eight propagators, five ‘bosonic’ and three ‘fermionic’; two of those bosonic propagators are
neutral (string 2N+) and the other three are charged (string 3C+); in the case of the fermionic
propagators, one is neutral and two are charged.

Recent versions differentiate between ‘true-propagators’ and ‘non-propagators’: if a
declaration contains the keyword external then it counts as a ‘non-propagator’, otherwise
as a ‘true-propagator’. An extra line may then be displayed, eg

non-propagators: (1) 1N+

propagators: (7) 1N+ 3C+ 1N- 2C-

Those numbers are mutually exclusive (in this example the model-file contains eight propa-
gator declarations too).

For qgraf-3.2 and later versions, and for 1-point diagrams only, the behaviour of
options nosnail and snail is not the same as for earlier versions: instead of rejecting all
such diagrams, nosnail is in that case equivalent to onshellx.

The implicit definition of option floop has not remained completely fixed since its
original implementation. In qgraf-3.2 and later versions the use of floop requires that

◦ there is at least one anti-commuting field;

◦ every vertex has either 0 or 2 anti-commuting fields.

The diagrams rejected by floop are those that have at least one loop (ie circuit) of odd
length for which every propagator is that of an anti-commuting field. The idea behind floop

is Furry’s theorem for QED, but it is up to the user to decide on its use. The dual option
notfloop is also available.

Input files containing a so-called UTF-8 byte order mark, which is included by some ap-
plications when saving a text document, have been accepted since the release of qgraf-3.1.4.
This provides the ability to create input files with a broader range of software (the actual
text characters must still be the printable ASCII characters, obviously).

33

20.1 Obviating the diagram generation

In some cases the program is able to detect that there are no diagrams, either for certain
vertex-degree partitions or even for all such partitions, without trying to generate any diagram
(this is work in progress). Those situations can be created by some combinations of options
and/or statements. In such cases (those detected, that is) the output displayed contains
additional symbols. If the program detects a complete absence of diagrams (for instance, if
the diagrams are required to be trees and also have self-loops), it will simply display

total = 0 connected diagrams **

without listing any partial result; else, for each ‘flagged’ degree partition (ie a partition for
which it has determined there can be no diagrams), the corresponding line in the output
displayed will look like this

3^2 4^1 0 **

In either case, the presence of those asterisks should mean that the usual diagram generation
was not attempted.

One other possibility of that kind consists in detecting whether the input process vio-
lates some particle number conservation rule or, equivalently, some conserved charge — where
conserved means conserved in the model described in the model-file, obviously. Still, for now,
there is a separate program (Qgraf-r) which may be used for (eg) that purpose.

20.2 Internal parameters

It is not advisable to change the default value of most of the internal parameters, as
there is a real risk of ending up with a defective program (specially for qgraf-3.1.5 and
more recent versions). The only changes that should be ‘safe’ are the ones that consist in
increasing the values of one or more of the following parameters

scbuff sibuff swbuff0

should the program report that they are too small (these parameters control the size of some
parts of the working memory). That should not be a frequent occurrence: there would have
to be (eg) an unusually large input file, or a model with a large number of vertices (or at least
some vertices of high degree). One may then double the value of each reported parameter,
more than once if necessary, until there is no error (alas, there are also upper limits); values
of the form 2n−1 should be preferred.

34

21. An example of a modern control-file

%% An example of a modern control-file

%% with optional statements commented out

% config = info, lf, noblanks ;

% messages = ’msg.txt’ ;

output = ’qlist’ ;

style = ’f1.sty’ ;

% output = ;

% style = ’f2.sty’ ;

model = qed1 // ’qedx’ ;

in = mu_minus[p1], mu_plus[p2] ;

out = photon[q1] ;

loops = 4 ;

loop_momentum = k ;

options = onepi, cycli ;

% index_offset = 257 ;

% partition = 3^5 4^2 ;

%% some other constraints may follow, eg

% true = vsum[v_weight, 2, 4];

% false = psum[p_weight, 0, 1];

% true = elink[-1, -3, incl, 1, 1];

% false = plink[-2];

35

22. An example of a modern model-file

% zone 1

%

% the submodels, and the sectors

[submodels :: subm1, subm2]

[p_sectors :: sk1]

[v_sectors :: sk2, sk3]

% zone 2

%

% the constants, the definitions of the global constants,

% and the defaults of the submodel-dependent constants

[constants :: c1, c2]

[c1 = ’f’]

% zone 3

%

% the functions and their global defaults

[integer f_functions :: ff1]

[p_functions :: pf1, pf2]

[;; ff1= (-1,1), (0)]

[;; pf1= ’1/2’]

[integer v_functions :: vf1]

% zone 4

%

% the submodel blocks

submodel[subm1]

[include :: sk2]

[c2 = ’scalar submodel’]

end[subm1]

(continues into the next page)

36

submodel[subm2]

[exclude ::]

[c2 = ’full model’]

end[subm2]

% zone 5

%

% the propagators and the propagator-type sector blocks

[phi, phi, + ; pf1= 0, pf2= ’A’]

sector[sk1]

[; pf2= ’B’]

[psi, psibar, -]

[lambda, lambda, - ; ff1= (1)]

end[sk1]

% zone 6

%

% the vertices and the vertex-type sector blocks

[phi, phi, phi ; vf1= 0]

sector[sk2]

[phi, phi, phi, phi ; vf1= 1]

end[sk2]

sector[sk3]

[; vf1= -1]

[psibar, psi, phi]

[psibar, psi, lambda, lambda]

end[sk3]

37

23. The diagram sign (extended version)

The diagram sign has been perhaps Qgraf’s least understood feature. This state of affairs
seems to derive mainly from the program’s ignorance about (or rather, avoidance of) graphical
rules — the most well known being ‘for each fermion loop, multiply the amplitude by −1’ , of
course. Then, what does Qgraf do?

The explanation for there being a possible relative minus sign between two distinct diagrams
(for the same scattering process) follows directly from Wick’s theorem in the presence of anti-
commuting fields. That is precisely the approach implemented in the program to compute
the sign of a Feynman diagram D (hereafter, we will naturally assume that D depends on
some anti-commuting fields). Qgraf starts by placing side by side (as a product) the vertices
into which D can be decomposed. For example,

F1 = (Ψ̄2 Ψ−1 A3) (Ψ̄−2 Ψ7 A5) (Ψ̄10 Ψ1 A6) (Ψ̄8 Ψ9 A4)

is the vertex product for the diagram shown in Fig. 7. The field ordering in each vertex
is assumed to coincide with that of the respective vertex statement given in the model-file;
the subscripts, which match the labels in that diagram, are the field indices computed by
the program. Those vertices have been reduced to a product of plain fields, as the other
contributions (coefficients, spacetime indices, and so on) will appear in the Feynman rules.

-1 -2

1

2

3

4

5

6

7

8

9

10

Fig. 7. A diagram (in QED) and its field index numbering.

In F1, the vertex sequential order is irrelevant because each vertex is (for this purpose) a
commuting quantity, as it comprises an even number of anti-commuting fields. In contrast,
the relative ordering of the anti-commuting fields in each vertex is clearly relevant. In any
case, one has to choose an (arbitrary) initial vertex ordering to do the computation, and
after that choice is made no vertices will be permuted — we will only perform a sequence
of simple transpositions, each one involving exactly two fields. If we discard the commuting
fields, which clearly play no role in the present computation, F1 will be reduced to the ordered
product

F2 = Ψ̄2 Ψ−1 Ψ̄−2 Ψ7 Ψ̄10 Ψ1 Ψ̄8 Ψ9

which may also be regarded as a sequence of fields. The next point to consider is that,
whatever the type of field, the propagator ordering chosen by Qgraf is always of the form

⟨Φ2k−1 Φ2k ⟩
where the subscripts denote (internally generated) field indices. Thus, in our example, the

38

internal anti-commuting fields will be paired into the following sub-sequences

⟨Ψ1 Ψ̄2 ⟩, ⟨Ψ7 Ψ̄8 ⟩, ⟨Ψ9 Ψ̄10 ⟩.
For explanatory purposes, it is useful to constrain the field transpositions allowed in this part
of the computation; without loss of generality, we shall require that the propagator pairing be
achieved without changing the relative ordering of the external fields. With this restriction,
once F1 is fixed the parity of the propagator pairing operation will be well defined for each
diagram. If this step takes tp transpositions, the contribution to the sign will be (−1)tp . The
internal fields are then deleted, as they are no longer needed. In our example, since an odd
number of transpositions is required to transform F2 into the sequence

F3 = Ψ−1 Ψ̄−2 Ψ1 Ψ̄2 Ψ7 Ψ̄8 Ψ9 Ψ̄10

we obtain a factor equal to −1.

The last part of the computation involves the external fields. Here, Qgraf assigns (arbitrar-
ily) a positive sign to its generic ‘reference’ sequence, viz

Φout
−2 Φout

−4 ... Φ
out
−2s Φ

in
−2r+1 ... Φ

in
−3 Φin

−1 ,

where r and s denote the number of incoming and outgoing fields, and where the subscripts are
(again) the field indices. Any occurring sequence Se of external fields obtained in the previous
step is then compared with the former one, and the parity of the number of transpositions
te needed to convert Se into the reference sequence (divested of its commuting fields) is
determined. Hence a new factor (−1)te is generated, and the diagram sign will be equal to
(−1)tp+te .

In our example, once the internal fields have been dropped from F3 we are left with the
sequence

F4 = Ψ−1 Ψ̄−2 ,

which may be converted into the reference sequence using a single transposition. Therefore,
as (−1)tp = (−1)te = −1, Qgraf generates the sign + for that diagram.

In comparison with a graphical rule, the preceding definition of diagram sign might seem
(to a human) unnecessarily complex, even error-prone; nevertheless, it is closely related to
Wick’s theorem, and its computation presents no special difficulty. On the other hand, users
who habitually rely on graphical rules might find some of the consequences of that definition
rather unexpected. For that reason, we will now take a look at a number of issues that may
arise out of misunderstanding or by mere inattention.

23.1 Problem 1

Let us suppose we have defined QED as follows,

% propagators

[photon, photon, +]

[positron, electron, -]

% vertex

[positron, electron, photon]

39

where electron corresponds to a Dirac field Ψ and positron corresponds to Ψ̄. The usual
declaration for that fermionic propagator is

[electron, positron, -]

as this is the one that corresponds to the ordered contraction ⟨ΨΨ̄⟩. The reason why the for-
mer declaration may be a problem is that Qgraf will then sort the internal anti-commuting
fields in a different way, and may thus compute a different sign. Then, if each propagator
expression in Qgraf’s output is replaced by the conventional propagator expression, the
result may be an incorrect amplitude (depending on the exact substitution used). Declaring
the ‘wrong’ vertex may lead to similar problems.

In QED, as defined above, using the conventional propagator expression does not always
lead to problems, owing to the following: first, for a fixed process, and a fixed order of
perturbation theory, every diagram has the same number of fermionic propagators; second,
when going from loop order n to order n+1, the number of fermionic propagators increases
by two. Nonetheless, there exist many models for which one can find (for the same scattering
process) two diagrams that have the same sign if the fermionic propagators are declared in
one way, and opposite sign in the other way.

23.2 Problem 2

We want to compute the amplitude for some scattering process that involves fermions (in the
initial or in the final state), both at leading order and at some higher orders. We declare

in = electron[p1], positron[p2] ;

out = photon[q1], Z[q2] ;

loops = 0 ;

for the leading order, and

in = positron[p2], electron[p1] ;

out = photon[q1], Z[q2] ;

loops = 1 ;

for the next-to-leading order. If the two initial fermion states are permuted, the parity (−1)te

changes (for every diagram). Oops, the next-to-leading order amplitude is to be added to the
leading order amplitude, but now every relative sign between a 0-loop diagram and a 1-loop
diagram will be wrong. A somewhat different problem may occur as well if the external
momenta are not declared, of course.

23.3 Problem 3

We have a model with both Dirac and Majorana fermions, say. Then we choose the scattering
process and the order of perturbation theory, and have Qgraf write down the corresponding
‘amplitude’. Now we pick the (commuting) expression for that amplitude, which incorporates
the diagram signs computed by Qgraf, and decide to ‘re-orient’ some fermion propagators
directly in that program’s output. For example, we do some substitutions such as

prop(Psi(3,k1), Psi(6,-k1)) → prop(Psi(6,-k1), Psi(3,k1))

where each of these expressions denotes a propagator function for a Majorana fermion Psi.

40

That may also be a problem since those signs were computed by assuming a certain field
ordering (eg for the propagator fields). If the redefined propagators had been used instead,
then different signs might have been produced for some diagrams.

We may also decide to exchange some arguments describing that same fermion, this time in
some expressions that represent vertices. For instance, we have an amplitude which includes
a sub-expression such as

vertex(Psi(5,k1), Psi(2,-k1-k2), A(7,k2))

where A denotes some bosonic field, and then (simply) exchange the arguments Psi(5,k1)

and Psi(2,-k1-k2) in that expression — since the fields are identical there is no problem,
right? Wrong, that exchange would have affected the computation of (−1)tp .

23.4 Problem 4

The Path Integral formulation of Quantum Mechanics ‘says’ that the amplitude for a given
scattering process should include the contribution of every ‘path’ leading from the initial to
the final state (in the corresponding interpretation, that is why one adds the contributions
of multiple Feynman diagrams, of course). Let us consider an experiment that has various
possible outcomes, and for which — as a result of the measuring apparatus not being precise
enough, say — some of the outcomes are not distinguishable from one another. Then, the
amplitude for a certain (measurable) final state may be obtained by adding the amplitudes
for the individual processes compatible with that measurement. In this case, the relative sign
between diagrams for (a priori) distinct processes becomes critical.

The emission of low energy photons in a high energy collider provides a simple example.
Experimentally, a process like

in = electron, positron ;

out = muon_minus, muon_plus ;

may sometimes be indistinguishable from (eg)

in = electron, positron ;

out = muon_minus, muon_plus, photon ;

Here, Qgraf seems to compute the correct relative sign between the (former) ‘non-radiative’
process and the (latter) ‘radiative’ process, if the respective declarations match as above
(one should check all the same, of course). Nevertheless, in general, Qgraf does not address
that type of problem, ie other means must be employed to determine an appropriate global
sign for each process. The sign of an amplitude may often be adjusted by permuting two
incoming (or two outgoing) fermions, but that is a minor point.

23.5 Solutions

It is always possible to ignore the sign computed by the program (by omitting any reference
to it in the style-file), although that will require the user to implement some substitute
definition (completely, that is). That seems the best option if one wishes to implement some
sign convention not supported by the program.

41

Alternatively, if one does not care much about which sign convention is actually used, but
wants nonetheless to be able to perform some substitutions that correspond in practice to
fermionic exchanges, there is another (possibly easier) type of solution which consists in fixing
the otherwise problematic substitutions (instead of discarding Qgraf’s sign altogether). The
basic idea is that each substitution that can affect the diagram sign should also generate a
factor (or an appropriate power) of −1. In other words, any substitution involving an odd
number of fermionic transpositions should generate a compensating factor of −1.

Solutions to Problem 1

There is more than one fix, apart from just using the conventional propagator declaration.
For instance, one may use (at the symbolic processing stage) a modified Feynman rule for the
propagator, differing from the standard one by a factor −1. Alternatively, the model could
be redefined completely, by letting Ψ describe the positron and Ψ̄ describe the electron.
This would have to be reflected on the form of the electromagnetic vertex, and one should
also have to consider what would the electric charge constant e define. Similar comments
apply to the non-conventional vertex declaration. Innovation of this kind is seldom a good
idea, as the task of comparing one’s results with existing results is (very likely) more difficult;
code debugging may also be harder.

Solution to Problem 2

Only the loop order of the diagrams should be changed, obviously. The extended loops

statement may help, but the diagrams are then listed in the same output-file (hence they have
to be selected afterwards depending on the order of perturbation theory being computed).

Solutions to Problem 3

For each fermionic transposition, whether in a propagator or in a vertex, there should be
an additional −1 factor. That type of problem may also occur as a result of using a wrong
substitution rule. Additionally, as (−1)2 = 1, it may sometimes happen that ‘two wrongs
make a right’ (and this also applies to the other issues).

23.6 Further comments

Graphical rules were first created at a time when Feynman diagrams were generated by hand,
and they allowed the person doing the QFT calculation to easily (ie ‘visually’) determine a
practical diagram sign. However, while graphical rules for QED and QCD are quite simple,
they are more complex for other types of models — pure graphical rules may not even exist.
The approach used by Qgraf can be employed in general — irrespective of the vertex degrees
and numbers of anti-commuting fields — although the output may have to be processed
somewhat to obtain expressions of the desired form.

Nowadays, with the use of automatic setups being the norm, the need for graphical rules is
much lower. In addition, ‘simplifying’ Wick’s theorem consists in practice in adopting some
(further) convention — while one of the guidelines behind Qgraf has been the adoption of
as few conventions as possible, specially when they are not general enough.

A continued reliance on graphical rules may also induce the belief that the diagram sign is
something much more rigid than it really is. By that, we mean that the sign derived from
any fixed set of graphical rules depends in fact on some convention(s) and/or assumption(s),
which those rules hide. Lastly, graphical rules do not necessarily solve Problem 4 either.

42

24. Models with explicit propagator mixing

For diagram generation purposes, a model features explicit propagator mixing if there
is at least one field appearing in two (or more) propagator declarations. Although this type of
model is not accepted (at least not yet), there is a way to obtain the corresponding Feynman
diagrams — namely, by replacing the original model by an appropriately transformed model,
as described in the following paper.

Feynman graph generation and propagator mixing, I
Comput. Phys. Commun. 269 (2021) 108103.

https://doi.org/10.1016/j.cpc.2021.108103

In general terms, that type of transformation can be described by an algorithm that involves

◦ introducing new (ancillary) ‘charged’ fields;

◦ modifying the original set of propagators, to eliminate explicit mixing;

◦ adding new interaction terms, similar to the existing ones, but depending on the new
fields as well.

Although (as originally described) that algorithm applies directly to models whose propa-
gators do not contribute to the order of perturbation theory (eg their Feynman rules are
independent of the coupling constants), it should be possible to apply it to many models
in which some of the propagators do contribute — namely, by defining appropriate weights
(here, p-functions) in the model-file and then using psum statements.

It is perhaps advisable to let the input process (specified by the incoming and outgoing
fields) be defined in terms of the fields of the original (non-transformed) model only, keeping
the ancillary fields as internal (ie appearing only in propagators). The reason is twofold:
clearly, ancillary external fields are not needed for studying the original model, and using
those fields adds an extra complication, to be described below, which may lead to errors.

Let us consider a Lagrangian density L(ϕ1, ϕ2) that depends on two self-conjugate (real)
fields ϕ1 and ϕ2, and whose quadratic part includes a mixing term involving both fields, eg

L = 1
2 ∂µϕ1∂

µϕ1 +
1
2 ∂µϕ2∂

µϕ2 + a ∂µϕ1∂
µϕ2 + . . .

In this case, as shown in Example 4.1 of the above mentioned paper, the transformed model
depends also on a conjugate pair of ancillary fields, to be denoted by ϕ3 and ϕ4. To convert
the diagrams obtained for the transformed model into the diagrams of the original model,
the internal ancillary fields ϕ3 and ϕ4 should be replaced as follows:

ϕ3 → ϕ1, ϕ4 → ϕ2.

In that paper, there is no discussion concerning the distinction between incoming and outgoing
fields. Implicitly, the definition of u-product entails that every external field is an incoming
field (the opposite convention is allowed, but it is perhaps not as common). However, as
Qgraf requires one to identify the incoming and the outgoing fields, one may find that the
previous substitution rules do not necessarily apply to external fields. In fact, while they are
still valid for incoming fields, for outgoing fields one has instead

ϕ3 → ϕ2, ϕ4 → ϕ1.

43

For example, since ϕ3 and ϕ4 constitute a conjugate pair, the input process

in = phi1 ;

out = phi3 ;

is essentially equivalent to

in = phi1, phi4 ;

out = ;

which (by the former substitution rules) is equivalent to

in = phi1, phi2 ;

out = ;

which (as ϕ2 is self-conjugate) is equivalent to

in = phi1 ;

out = phi2 ;

which should be compared with the initial process. These processes are (essentially) equivalent
in the sense that the set of diagrams generated for each process can be easily transformed
into the set of diagrams for any other equivalent process; in particular, those sets have the
same number of elements. On the other hand, the process

in = phi1 ;

out = phi4 ;

is not equivalent to the previous ones.

24.1 The keyword internal

Although the keyword internal may seem not to be really needed it can be useful in
describing some models, should one wish to specify that some fields should never appear as
external fields of the physical process (or correlation function) given as input. For example,
if the model-file contains the propagator statement

[phi1, phi2, +, internal]

then phi1 and phi2 should both be excluded from any in and out statements, otherwise
an error condition will occur. The keywords internal and external are incompatible, of
course.

44

25. Compiling

The source file(s) of qgraf-3.5 and later versions are expected to be compatible with
the Fortran 2008 standard, although testing has been restricted to the GFortran compiler.
There is a minor inconvenience in that a number of Fortran module files are created (one file
for each module defined in the source code); nevertheless, GFortran may place those files in
a user-definable directory, and they can be deleted once the executable has been created. In
a Linux/GNU system, one may execute (eg) the following line commands

mkdir fmodules

gfortran -o qgraf -Os -J fmodules qgraf-3.6.7.f08

to obtain a binary named qgraf from a Fortran 2008 version (the correct version numbers
should be used, of course). The option -Os tells the compiler to try to minimize the size of the
executable while still enabling some optimizations that tend to increase the performance of
the generated code; the option -O2 optimizes a bit more (for performance) than -Os, and -O3

is also a possibility (option -Ofast should not be used). If the compilation process generates
an error like this one

Fatal Error: Cannot read module file aski.mod opened at (1),

because it was created by a different version of GNU Fortran

that likely means that the compiler found earlier module files in a different format (which
it could have ignored) and then it gets a bit confused. In that case, find and delete all the
problematic module files, both in the working directory and in the directory specified by
the option -J (as reported by the compiler, their filenames should have the extension .mod).
Better yet, remove the Fortran module files before each new compilation takes place (there
should be a dozen such files or so).

As there are no modules in Fortran 77, the next command may be used as a template
for compiling older versions.

gfortran -o qgraf -Os qgraf-3.4.2.f

There are executable/binary versions of GNU Fortran for several operating systems, as de-
scribed in

https://gcc.gnu.org/wiki/GFortranBinaries

The license for this program has changed ‘recently’ (see Fortran file). Should you find
something in it that you really consider unreasonable, please let me know.

Compiling with options that rely on somewhat sophisticated code transformations to
produce more efficient binaries (this is often called aggressive optimization), such as -O3

in GFortran, should probably be avoided unless the additional speed is really needed —
compilers, like other computer programs, are not immune to errors. For relevant computations
(ie other than testing), such options should be used only after some preliminary successful
testing (with similar but possibly computationally less-demanding cases), where the outputs
of two or more binaries compiled with different optimization levels are compared — a binary
with the desired ‘aggressive’ level, and one or more binaries with ‘non-aggressive’ levels, say.

45

Furthermore, it should be kept in mind that changing the program’s environment (hardware
or software, eg just updating the compiler, which one’s computer might do automatically,
and then recompiling) may invalidate a previous test.

It is perhaps worth mentioning that Qgraf does not make system calls to run shell
commands, ie it does not rely on statements of the following forms.

call system(...)

call execute_command_line(...)

The first is a non-standard system call available with GFortran (eg for Fortran 77), and the
other is the standard Fortran call, introduced with Fortran 2008. Obviously, input and output
statements are used extensively, providing access to the standard output, to the control-file,
and to any file specified in the control-file.

46

26. Automatic downloads, licensing

It may be useful to have a simple way of automatically downloading a patched version
instead of an outdated version with known problems, or even download a new (minor) version
instead of the previous one. The following version-linking set-up has been implemented.

◦ all future releases will be numbered ‘x.y.z’ (ie using major, minor, and patch numbers);
for instance, the first version of ‘qgraf-4’ should be qgraf-4.0.0 ;

◦ a request to download links/qgraf-x.y.tgz (with valid x and y) will be converted
into a request for the version qgraf-x.y.z.tgz with the highest (available) z ; the end
result should be the latest qgraf-x.y.z for the given x and y.

◦ a request to download links/qgraf-x.tgz (with valid x) will be converted first into a
request for the links/qgraf-x.y.tgz with the highest y, which will then be converted
by the previous rule;

◦ a request to download links/qgraf-x.s.tgz (with integer x and literal s) will be
converted into a request for the links/qgraf-x.y.tgz with the highest y such that
qgraf-x.y has been declared ‘stable’ ;

◦ other requests, including those for a specific version, will not be converted (irrespective
of availability);

◦ automatic downloads should point to the directory links instead of ‘vx.y’, eg

wget --quiet --user=anonymous --password=anonymous -O ./qgraf.tgz \

http://qgraf.tecnico.ulisboa.pt/links/qgraf-3.4.tgz

◦ after each new release, there will be a ‘grace period’ (to be announced, possibly variable)
before the corresponding conversions become effective; that would be coupled with an
optional, automatic message system (see below).

This should not be contentious since it is optional and does not remove existing features. An
‘alert system’ , which would allow ‘package owners’ and other users to automatically receive
news and (above all) alerts about the program, is being considered.

Please do not implement or describe the (any) downloading method openly in some
webpage, ready for ‘bot use’ (there seems to be more than enough bot generated web traffic
already). The information here provided is for ‘package-scripting’ only (ie for those packages
that rely on this program).

Some versions that are no longer referenced on the Downloads webpage might still be
temporarily available in the above mentioned links directory. At the time of the release of
qgraf-3.6.7 the convertible requests and the targets they point to are as follows.

links/qgraf-3.4.tgz → qgraf-3.4.2.tgz

links/qgraf-3.5.tgz → qgraf-3.5.2.tgz

links/qgraf-3.6.tgz → qgraf-3.6.7.tgz

links/qgraf-3.tgz → qgraf-3.6.tgz

links/qgraf-3.s.tgz → qgraf-3.6.tgz

47

and the non-convertible requests are

links/qgraf-3.4.2.tgz

links/qgraf-3.5.2.tgz

links/qgraf-3.6.6.tgz

links/qgraf-3.6.7.tgz

26.1 Stable versions and licensing

A stable version is a version that should be expected to be available and supported
for a reasonably long period (five years, at least), within my abilities and resources, and
assuming that the present circumstances do not worsen in any relevant way, of course. Note
that by version I mean something like qgraf-x.y where x and y denote the major and the
minor version numbers, and which includes all (patch) versions qgraf-x.y.z with fixed x

and y. Since declaring a version as stable the moment it is released does not seem to be the
best strategy, there will be a delay (officially, a minimum of five months) so that (i) a better
perspective on the program development may be obtained and (ii) there is an additional
opportunity to find and eliminate any remaining bugs, or even to refine or add some feature.
Once a version is declared stable, it should not be modified except for fixing some anomalous
behaviour, or error, and even then in a minimal way.

Not every version will be declared as stable and, depending on its usefulness, a stable
version may become unavailable once the appropriate period expires. One idea here is that
some versions are ‘more equal’ than others, and that if some critical bug happens to be
found then the stable versions will be prioritised, whilst the non-stable versions could even
be pulled out, temporarily or otherwise. That is why the licensing terms say that packages
relying on Qgraf should be able to use a stable version — not necessarily in an exclusive
way. The interpretation of that part of the licensing terms should be that some available
version of the package should be able to rely on an available, stable version of Qgraf. If the
package dependence is introduced7 at a time when Qgraf’s latest version is not stable, and
if no stable version fulfils the necessary requirements, then it could be acceptable to defer
the fulfilment of that condition until the following stable version is declared — provided the
inherent risks are assumed.

There is now a provision for distributing officially unavailable, stable versions8 of
Qgraf in two cases (see the header of one of the latest Fortran files for details), provided
it is legal to do so: (i) with (old) packages for which no upgrade is feasible, or (ii) if/when
Qgraf’s official website closes down. Nevertheless, in the former case this provision might
not be needed in practice as there is little backwards-incompatibility in qgraf-3, specially at
the level typically required by other packages; in addition, I might be able to provide some
help on such matters, should that kind of help be requested.

Non-stable versions should be expected to become unsupported, and unavailable for
downloading, two years after the release of the subsequent stable version (but they might be
pulled out for other reasons too).

7 The relevant date is the release date of that package version, obviously.
8 This means the latest patch version, of course; for example, qgraf-3.4 is stable, but the actual version

that would be distributed is (at present) qgraf-3.4.2.

48

27. Changelog for qgraf-3

3.1 (May 2005)

New features: the vsum and psum statements; the output displayed is more detailed.

3.1.1 (April 2008)

Fixes a problem with psum, as well as a minor bug related to the output displayed.

3.1.2 (September 2010)

Fixes a problem with vsum.

3.1.3 (November 2011)

Removes non-standard options of the OPEN statements from the source code (following a sug-
gestion made by the GoSam collaboration) to make it automatically compatible with gfortran.

3.1.4 (October 2012)

New features: ability to read files containing ASCII text prepended by an UTF-8 byte order
mark.

3.1.5 (February 2018)

Includes a minimal, partial ‘fix’ to one of the performance bottlenecks, which nevertheless
provides, in some cases, the ability to generate diagrams at roughly one additional order of
perturbation theory.

3.2 (June 2018)

New features: option onshellx and its dual; option notfloop (the dual of floop). Modifies
the behaviour of option nosnail (and its dual) for 1-point diagrams. Fixes a problem with the
style-file processing; fixes a problem with the diagram index (there is an error if the number
of diagrams is large, ie > 8 · 108), and allows that index to exceed 231. Minor optimizations.

3.3 (July 2018)

New features: the index_offset statement; option bipart and its dual; the elink and plink

statements. Improves treatment of duplicate vertices. Fixes a problem with the model-file
processing (involving the model-constants).

3.4 (January 2019)

New features: the config statement; options cycli, onevi, and their duals. Fixes a problem
with option nosigma, and one other problem with the output displayed which involves the
propagator types.

49

3.4.1 (March 2019)

Fixes a problem with the plink statement, and a problem involving the simultaneous use of
options nosnail and notadpole. Adds adjective connected to the output displayed, to stress
the fact that non-connected diagrams are not generated.

3.4.2 (April 2019)

Fixes a bug that generates problematic error messages about model-functions.

3.5.0 (May 2021)

First version compatible with the Fortran 2008 standard. New features: the noblanks config
option; the messages statement; the ability to generate multiple output-files in the same
run; options noselfloop, nodiloop, noparallel, and their duals. Improved memory man-
agement. Fixes a problem with qgraf-3.4 (including 3.4.*), which fails to detect some
forbidden characters (eg Tab) in input files.

3.5.1 (March 2022)

New features: version reporting, with the command-line option --version (or -version).
Fixes the text of an error message.

3.5.2 (June 2022)

Bug fix: enforces the computation of the internal momenta in some additional multiple-
output instances. Announces ability to define the name of the control-file as a command-line
argument.

3.6.0 (April 2022)

New features: a revamped input-model description; the partition statement; the keywords
<new_partition>, <new_topology>, <new_elinks>, <full_time>, and <raw_time>. Intro-
duces some algorithmic improvements into vsum and psum, to address certain special cases.
As a proof of concept, it introduces a formal way to pass the amplitudes directly to another
Fortran (and in the future, C) computer program, by using Qgraf as a subprogram.

3.6.1 (April 2022)

Fixes a bug envolving the constants of the input model.

3.6.2 (May 2022)

Fixes a bug related to the decomposability of the input model and which may lead the
program to bypass the diagram generation.

3.6.3 (June 2022)

New features: an extended partition statement. Bug fixes: restores ability to define the
external momenta; enforces the computation of the internal momenta in some additional
multiple-output instances; allows relative reordering of the partition and index_offset

statements.

50

3.6.4 (September 2022)

New features: extended loops statement (and corresponding screen output); the keyword
<new_loops>; the keyword internal. Bug fixes: corrects a problem with a recent modifica-
tion of psum, which may result in the rejection of valid diagrams.

Removes the proof of concept feature (interface to Fortran programs) in anticipation of the
expected assignment of a stable status to qgraf-3.6.

3.6.5 (October 2022)

Bug fixes: corrects a problem with the (recently extended) loops statement, which may
disrupt some diagram options.

3.6.6 (May 2023)

Bug fixes: corrects an internal check that may lead the program to exit prematurely (with
error code trm 1). A few other (very minor) modifications have been made, but it is not clear
whether these include error fixes; for some compilers, or for some versions of some compilers,
that might be the case (eg some previous statements may not be fully standard).

3.6.7 (December 2023)

Bug fixes: reinstates ability to use (i) unencoded rationals, in model-files, and (ii) strings
with apostrophes (even before encoding, that is), in model-files and control-files; no longer
displays some bits of information when the config option noinfo is used.

